論文の概要: Data-Driven Information Extraction and Enrichment of Molecular Profiling
Data for Cancer Cell Lines
- arxiv url: http://arxiv.org/abs/2307.00933v2
- Date: Mon, 12 Feb 2024 11:43:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-14 00:26:50.877976
- Title: Data-Driven Information Extraction and Enrichment of Molecular Profiling
Data for Cancer Cell Lines
- Title(参考訳): データ駆動によるがん細胞株の分子プロファイリングデータの抽出と濃縮
- Authors: Ellery Smith, Rahel Paloots, Dimitris Giagkos, Michael Baudis, Kurt
Stockinger
- Abstract要約: 本研究では,新しいデータ抽出・探索システムの設計,実装,応用について述べる。
我々は、ゲノムコピー番号の変種プロットと、ランク付けされた関連エンティティの自動リンクを可能にする、新しい公開データ探索ポータルを導入する。
私たちのシステムは、https://cancercelllines.org.comで公開されています。
- 参考スコア(独自算出の注目度): 1.1999555634662633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the proliferation of research means and computational methodologies,
published biomedical literature is growing exponentially in numbers and volume.
Cancer cell lines are frequently used models in biological and medical research
that are currently applied for a wide range of purposes, from studies of
cellular mechanisms to drug development, which has led to a wealth of related
data and publications. Sifting through large quantities of text to gather
relevant information on the cell lines of interest is tedious and extremely
slow when performed by humans. Hence, novel computational information
extraction and correlation mechanisms are required to boost meaningful
knowledge extraction. In this work, we present the design, implementation and
application of a novel data extraction and exploration system. This system
extracts deep semantic relations between textual entities from scientific
literature to enrich existing structured clinical data in the domain of cancer
cell lines. We introduce a new public data exploration portal, which enables
automatic linking of genomic copy number variants plots with ranked, related
entities such as affected genes. Each relation is accompanied by
literature-derived evidences, allowing for deep, yet rapid, literature search,
using existing structured data as a springboard. Our system is publicly
available on the web at https://cancercelllines.org
- Abstract(参考訳): 研究手段と計算方法論の普及に伴い、生物医学の出版物は数と体積が指数関数的に増加している。
がん細胞株は、細胞機構の研究から薬物開発まで、現在幅広い用途に応用されている生物学的および医学的な研究で頻繁に用いられるモデルであり、関連するデータや出版物が豊富にある。
大量のテキストを通して興味のある細胞株の関連情報を収集することは、人間が行うと退屈で非常に遅い。
したがって、意味のある知識抽出を促進するためには、新しい計算情報抽出と相関機構が必要である。
本研究では,新しいデータ抽出・探索システムの設計,実装,応用について述べる。
本システムは、科学文献からテクストエンティティ間の深い意味関係を抽出し、癌細胞株の領域における既存の構造化臨床データを強化する。
我々は,ゲノムコピー番号の変種プロットと,影響を受ける遺伝子などの関連エンティティの自動リンクを可能にする,新しい公開データ探索ポータルを導入する。
それぞれの関係には文学由来の証拠が伴い、既存の構造化されたデータをバネボードとして使用して、深く、かつ高速な文献検索を可能にする。
私たちのシステムは、https://cancercelllines.orgで公開されています。
関連論文リスト
- UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - Graph-Based Retriever Captures the Long Tail of Biomedical Knowledge [2.2814097119704058]
大規模言語モデル(LLM)は、膨大な知識を要約して提示することで、情報の検索方法を変えつつある。
LLMはトレーニングセットから最も頻繁に見られる情報を強調し、まれな情報を無視する傾向があります。
本稿では,これらのクラスタをダウンサンプリングし,情報過負荷問題を緩和するために知識グラフを活用する新しい情報検索手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T18:31:11Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Integrating curation into scientific publishing to train AI models [1.6982459897303823]
我々は,複数モーダルデータキュレーションを学術出版プロセスに組み込んで,セグメント化された図形パネルやキャプションに注釈を付ける。
SourceData-NLPというデータセットには、620,000以上の注釈付きバイオメディカルエンティティが含まれている。
我々は、名前付き認識、図形キャプションを構成パネルに分割すること、コンテキスト依存型セマンティックタスクを用いて、AIモデルをトレーニングするためのデータセットの有用性を評価する。
論文 参考訳(メタデータ) (2023-10-31T13:22:38Z) - Descriptive Knowledge Graph in Biomedical Domain [26.91431888505873]
本稿では,バイオメディカルコーパスから情報文や記述文を自動的に抽出し,生成する新しいシステムを提案する。
接続されていない経路を検索する従来の検索エンジンや探索システムとは異なり,本システムは記述文をグラフとして整理する。
新型コロナウイルス研究における本システムの適用に着目し,薬物再資源化や文献キュレーションなどの分野における実用性について考察した。
論文 参考訳(メタデータ) (2023-10-18T03:10:25Z) - Machine Learning Approach for Cancer Entities Association and
Classification [0.0]
この研究は、非自明な2つのNLP、自然言語処理機能、エンティティ認識、テキスト分類を用いて、生物医学文献から知識を発見する。
名前付きエンティティ認識(NER)は、ユーザフレンドリーなインターフェースと組み込み辞書のサポートにより、構造化されていないテキストから、がんに関連する事前定義されたエンティティを認識し、抽出する。
テキスト分類は、テキストに対する洞察を探求し、データの分類、クエリ、記事のスクリーニングを簡単にするのに役立つ。
論文 参考訳(メタデータ) (2023-05-30T07:36:12Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
本論文は,生物医学領域の概念とそれらの関連性を記述するオントロジーであるEBOCAと,それらの関連性を支持するエビデンスを提案する。
DISNETのサブセットから得られるテストデータとテキストからの自動アソシエーション抽出が変換され、実際のシナリオで使用できる知識グラフが作成されるようになった。
論文 参考訳(メタデータ) (2022-08-01T18:47:03Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - DeepShovel: An Online Collaborative Platform for Data Extraction in
Geoscience Literature with AI Assistance [48.55345030503826]
地質学者は、関連する結果やデータを発見、抽出、集約するために膨大な量の文献を読む必要がある。
DeepShovelは、彼らのニーズをサポートするAI支援データ抽出システムである。
14人の研究者によるユーザ評価の結果、DeepShovelは科学データベース構築のためのデータ抽出の効率を改善した。
論文 参考訳(メタデータ) (2022-02-21T12:18:08Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
本稿では,バイオメディカルテキストと非構造化医療報告から関係を抽出するハイブリッドニューラルネットワークであるバイオメディカル情報抽出を提案する。
本研究は,2つの主要な生医学的関係抽出タスク,化学物質とタンパク質の相互作用,およびクロスホスピタル・パン・カンノロジー報告コーパスについて検討した。
論文 参考訳(メタデータ) (2021-10-26T13:19:28Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。