論文の概要: SAMAug: Point Prompt Augmentation for Segment Anything Model
- arxiv url: http://arxiv.org/abs/2307.01187v2
- Date: Tue, 31 Oct 2023 03:09:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 23:16:13.813480
- Title: SAMAug: Point Prompt Augmentation for Segment Anything Model
- Title(参考訳): SAMAug:セグメンテーションモデルのためのポイントプロンプト拡張
- Authors: Haixing Dai, Chong Ma, Zhengliang Liu, Yiwei Li, Peng Shu, Xiaozheng
Wei, Lin Zhao, Zihao Wu, Fang Zeng, Dajiang Zhu, Wei Liu, Quanzheng Li,
Tianming Liu, and Xiang Li
- Abstract要約: 本稿では,Segment Anything Model(SAM)のための新しい視覚点拡張法であるSAMAugを紹介する。
SAMAugは、SAMに対するユーザの意図に関する情報を提供するために、拡張ポイントプロンプトを生成する。
実験結果から,SAMAugはSAMのセグメンテーション結果を,特に最大距離と塩分濃度を用いて向上させることができることがわかった。
- 参考スコア(独自算出の注目度): 43.96075656836457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces SAMAug, a novel visual point augmentation method for
the Segment Anything Model (SAM) that enhances interactive image segmentation
performance. SAMAug generates augmented point prompts to provide more
information about the user's intention to SAM. Starting with an initial point
prompt, SAM produces an initial mask, which is then fed into our proposed
SAMAug to generate augmented point prompts. By incorporating these extra
points, SAM can generate augmented segmentation masks based on both the
augmented point prompts and the initial prompt, resulting in improved
segmentation performance. We conducted evaluations using four different point
augmentation strategies: random sampling, sampling based on maximum difference
entropy, maximum distance, and saliency. Experiment results on the COCO,
Fundus, COVID QUEx, and ISIC2018 datasets show that SAMAug can boost SAM's
segmentation results, especially using the maximum distance and saliency.
SAMAug demonstrates the potential of visual prompt augmentation for computer
vision. Codes of SAMAug are available at github.com/yhydhx/SAMAug
- Abstract(参考訳): 本稿では,対話型画像分割性能を向上させるSegment Anything Model(SAM)のための新しい視覚点拡張手法であるSAMAugを紹介する。
SAMAugは、SAMに対するユーザの意図に関する情報を提供するために、拡張ポイントプロンプトを生成する。
SAMは初期点プロンプトから初期マスクを生成し、提案したSAMAugに入力して拡張点プロンプトを生成する。
これらの追加ポイントを組み込むことで、samは拡張ポイントプロンプトと初期プロンプトの両方に基づいて拡張セグメンテーションマスクを生成することができ、セグメンテーション性能が向上する。
ランダムサンプリング,最大差分エントロピーに基づくサンプリング,最大距離,塩分率という4つの異なる点拡張戦略を用いて評価を行った。
COCO、Fundus、COVID QUEx、ISIC2018データセットの実験結果は、SAMAugがSAMのセグメンテーション結果、特に最大距離とサリエンシを使って促進できることを示している。
SAMAugはコンピュータビジョンの視覚的プロンプト増強の可能性を示す。
SAMAugのコードはgithub.com/yhydhx/SAMAugで入手できる。
関連論文リスト
- From SAM to SAM 2: Exploring Improvements in Meta's Segment Anything Model [0.5639904484784127]
Segment Anything Model (SAM)は、2023年4月にMetaによってコンピュータビジョンコミュニティに導入された。
SAMはゼロショットのパフォーマンスに優れ、追加のトレーニングなしで見えないオブジェクトをセグメンテーションする。
SAM 2は、この機能をビデオに拡張し、前および後続のフレームからのメモリを活用して、ビデオ全体にわたって正確なセグメンテーションを生成する。
論文 参考訳(メタデータ) (2024-08-12T17:17:35Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
そこで本研究では,海洋生物のセグメンテーションのためのMAS-SAMという新しい特徴学習フレームワークを提案する。
本手法により,グローバルな文脈的手がかりからよりリッチな海洋情報を抽出し,よりきめ細かな局部的詳細を抽出できる。
論文 参考訳(メタデータ) (2024-04-24T07:38:14Z) - Test-Time Adaptation with SaLIP: A Cascade of SAM and CLIP for Zero shot Medical Image Segmentation [10.444726122035133]
臓器分割のための単純な統合フレームワークSaLIPを提案する。
SAMは画像内の部分ベースのセグメンテーションに使用され、CLIPは関心領域に対応するマスクを検索する。
最後に、SAMは検索されたROIによって特定の臓器を分節するように促される。
論文 参考訳(メタデータ) (2024-04-09T14:56:34Z) - VRP-SAM: SAM with Visual Reference Prompt [73.05676082695459]
そこで我々は,Segment Anything Model (SAM) を利用した新しいVisual Reference Prompt (VRP) エンコーダを提案する。
本質的には、VRP-SAMは注釈付き参照画像を使用して特定のオブジェクトを理解し、ターゲット画像内の特定のオブジェクトのセグメンテーションを実行することができる。
論文 参考訳(メタデータ) (2024-02-27T17:58:09Z) - PA-SAM: Prompt Adapter SAM for High-Quality Image Segmentation [19.65118388712439]
本稿では,新しいプロンプト駆動型アダプタであるPrompt Adapter Segment Anything Model(PA-SAM)を紹介する。
PA-SAMはプロンプトアダプタを専用にトレーニングすることで、画像から詳細な情報を抽出し、スパースレベルとディーププロンプトレベルの両方でマスクデコーダ機能を最適化する。
実験の結果,PA-SAMは他のSAM法よりも高品質,ゼロショット,オープンセットのセグメンテーションで優れていた。
論文 参考訳(メタデータ) (2024-01-23T19:20:22Z) - Learning to Prompt Segment Anything Models [55.805816693815835]
Segment Anything Models (SAM)は、何かをセグメント化する学習において大きな可能性を実証している。
SAMは、空間的プロンプト(例えば、点)と意味的プロンプト(例えば、テキスト)を含む2種類のプロンプトで動作する。
より優れたSAMのための効果的な意味と空間的プロンプトを学習する空間意味的プロンプト学習(SSPrompt)を提案する。
論文 参考訳(メタデータ) (2024-01-09T16:24:25Z) - Stable Segment Anything Model [79.9005670886038]
SAM(Segment Anything Model)は、高品質なプロンプトが与えられた場合、顕著に迅速なセグメンテーションを実現する。
本稿では,SAMのセグメンテーション安定性について,多様なプロンプト特性のスペクトルにわたって包括的解析を行った。
1)SAMのセグメンテーション安定性を広範囲に改善し,2)SAMの強力なセグメンテーション効率と一般化を維持した。
論文 参考訳(メタデータ) (2023-11-27T12:51:42Z) - How to Efficiently Adapt Large Segmentation Model(SAM) to Medical Images [15.181219203629643]
Segment Anything (SAM)は、自然画像のゼロショットセグメンテーションにおいて印象的な機能を示す。
しかし、医療画像に適用すると、SAMは顕著なパフォーマンス低下に悩まされる。
本研究では,SAMエンコーダを凍結し,軽量なタスク固有予測ヘッドを微調整することを提案する。
論文 参考訳(メタデータ) (2023-06-23T18:34:30Z) - Personalize Segment Anything Model with One Shot [52.54453744941516]
我々は,Segment Anything Model (SAM) のためのトレーニング不要なパーソナライズ手法を提案する。
PerSAMは、参照マスクを持つ1つのイメージしか持たないため、最初にターゲットのコンセプトを以前のロケーションでローカライズする。
PerSAMは、ターゲット誘導された注意、ターゲットセマンティックなプロンプト、そしてカスケードされたポストリファインメントという3つのテクニックを通じて、他の画像やビデオにセグメントする。
論文 参考訳(メタデータ) (2023-05-04T17:59:36Z) - Can SAM Segment Anything? When SAM Meets Camouflaged Object Detection [8.476593072868056]
SAMはMeta AI Researchが最近リリースしたセグメンテーションモデルである。
我々は,SAMがカモフラージュオブジェクト検出(COD)タスクに対処できるかどうかを問うとともに,SAMの性能をCODベンチマークで評価する。
また,SAMの性能を22の最先端COD法と比較した。
論文 参考訳(メタデータ) (2023-04-10T17:05:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。