論文の概要: A Strong Baseline for Point Cloud Registration via Direct Superpoints Matching
- arxiv url: http://arxiv.org/abs/2307.01362v4
- Date: Fri, 29 Mar 2024 17:11:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 11:12:51.421726
- Title: A Strong Baseline for Point Cloud Registration via Direct Superpoints Matching
- Title(参考訳): 直接スーパーポイントマッチングによるポイントクラウド登録のための強力なベースライン
- Authors: Aniket Gupta, Yiming Xie, Hanumant Singh, Huaizu Jiang,
- Abstract要約: 本稿では,グローバルなマッチング方式でスーパーポイントの対応を見つけるための,シンプルで効果的なベースラインを提案する。
我々の単純で効果的なベースラインは、3つのデータセットの最先端メソッドと同等かそれ以上の結果を示している。
- 参考スコア(独自算出の注目度): 7.308509114539376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks endow the downsampled superpoints with highly discriminative feature representations. Previous dominant point cloud registration approaches match these feature representations as the first step, e.g., using the Sinkhorn algorithm. A RANSAC-like method is then usually adopted as a post-processing refinement to filter the outliers. Other dominant method is to directly predict the superpoint matchings using learned MLP layers. Both of them have drawbacks: RANSAC-based methods are computationally intensive and prediction-based methods suffer from outputing non-existing points in the point cloud. In this paper, we propose a straightforward and effective baseline to find correspondences of superpoints in a global matching manner. We employ the normalized matching scores as weights for each correspondence, allowing us to reject the outliers and further weigh the rest inliers when fitting the transformation matrix without relying on the cumbersome RANSAC. Moreover, the entire model can be trained in an end-to-end fashion, leading to better accuracy. Our simple yet effective baseline shows comparable or even better results than state-of-the-art methods on three datasets including ModelNet, 3DMatch, and KITTI. We do not advocate our approach to be \emph{the} solution for point cloud registration but use the results to emphasize the role of matching strategy for point cloud registration. The code and models are available at https://github.com/neu-vi/Superpoints_Registration.
- Abstract(参考訳): ディープニューラルネットワークは、高度に識別可能な特徴表現で、サンプリングされたスーパーポイントを許容する。
以前の支配的なクラウド登録アプローチは、Sinkhornアルゴリズムを使用した最初のステップとして、これらの特徴表現と一致している。
その後、RANSACライクな手法が後処理の改良として採用され、オプティラをフィルタする。
その他の支配的な方法は、学習したMLP層を用いてスーパーポイントマッチングを直接予測することである。
RANSACベースのメソッドは計算集約的で、予測ベースのメソッドは、ポイントクラウド内の既存のポイントを出力するのに苦しむ。
本稿では,グローバルなマッチング方式でスーパーポイントの対応を見つけるための,単純で効果的なベースラインを提案する。
正規化マッチングスコアを各対応の重みとして使用し、不規則なRANSACを使わずに変換行列を適合させる際には、アウトレーヤを拒否し、残りのインレーヤを重み付けすることができる。
さらに、モデル全体がエンドツーエンドでトレーニングできるため、精度が向上する。
我々の単純で効果的なベースラインは、ModelNet、3DMatch、KITTIを含む3つのデータセットの最先端メソッドと同等あるいはそれ以上の結果を示している。
私たちは、ポイントクラウド登録のためのemph{the}ソリューションへのアプローチを提唱しませんが、ポイントクラウド登録のためのマッチング戦略の役割を強調するために結果を使用します。
コードとモデルはhttps://github.com/neu-vi/Superpoints_Registrationで公開されている。
関連論文リスト
- Inferring Neural Signed Distance Functions by Overfitting on Single Noisy Point Clouds through Finetuning Data-Driven based Priors [53.6277160912059]
本稿では,データ駆動型およびオーバーフィット型手法のプロースを推進し,より一般化し,高速な推論を行い,より高精度なニューラルネットワークSDFを学習する手法を提案する。
そこで本研究では,距離管理やクリーンポイントクラウド,あるいは点正規化を伴わずに,データ駆動型プリエントを微調整できる新しい統計的推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-25T16:48:44Z) - Robust Point Cloud Registration Framework Based on Deep Graph
Matching(TPAMI Version) [13.286247750893681]
3Dポイントクラウドの登録は、コンピュータビジョンとロボティクスの基本的な問題である。
本稿では,ポイントクラウド登録のための新しいディープグラフマッチングベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-09T06:05:25Z) - PointCLM: A Contrastive Learning-based Framework for Multi-instance
Point Cloud Registration [4.969636478156443]
PointCLMは、ミュートリインスタンスポイントクラウド登録のための対照的な学習ベースのフレームワークである。
提案手法は, 合成データと実データの両方において, 最先端の手法よりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2022-09-01T04:30:05Z) - Learning to Register Unbalanced Point Pairs [10.369750912567714]
最近の3D登録法は,大規模あるいは部分的に重複する点対を効果的に扱うことができる。
非平衡点対に対する新しい3次元登録手法であるUPPNetを提案する。
論文 参考訳(メタデータ) (2022-07-09T08:03:59Z) - REGTR: End-to-end Point Cloud Correspondences with Transformers [79.52112840465558]
我々は、注意機構が明示的な特徴マッチングとRANSACの役割を置き換えることができると推測する。
本稿では,最終文集合を直接予測するエンドツーエンドフレームワークを提案する。
提案手法は3DMatchおよびModelNetベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-28T06:01:00Z) - Geometric Transformer for Fast and Robust Point Cloud Registration [53.10568889775553]
点雲登録のための正確な対応を抽出する問題について検討する。
最近のキーポイントフリー手法は、低オーバーラップシナリオでは難しい繰り返し可能なキーポイントの検出を回避している。
本稿では,ロバストなスーパーポイントマッチングのための幾何学的特徴を学習するための幾何学変換器を提案する。
論文 参考訳(メタデータ) (2022-02-14T13:26:09Z) - Unsupervised Representation Learning for 3D Point Cloud Data [66.92077180228634]
我々は、教師なしのポイントクラウド学習に対して、シンプルで効果的なアプローチを提案する。
特に、原点雲の優れたコントラストバージョンを生成する非常に有用な変換を同定する。
本研究では,3次元オブジェクト分類,形状部分分割,シーン分割の3つの下流タスクについて実験を行った。
論文 参考訳(メタデータ) (2021-10-13T10:52:45Z) - DeepBBS: Deep Best Buddies for Point Cloud Registration [55.12101890792121]
DeepBBSは、トレーニング中のポイント間の最良の相反する距離を考慮に入れた表現を学ぶための新しい方法である。
実験の結果,従来の手法と比較して性能が向上した。
論文 参考訳(メタデータ) (2021-10-06T19:00:07Z) - Point Cloud Registration using Representative Overlapping Points [10.843159482657303]
本稿では,登録のための識別機能を備えた代表オーバーラップポイントを用いた新しいディープラーニングモデル ROPNetを提案する。
具体的には,エンコーダを用いてポイントオーバーラップスコアの予測にグローバルな特徴を抽出するコンテキスト誘導モジュールを提案する。
ノイズと部分重なり合う点雲を用いたModelNet40上での実験により,提案手法が従来の学習手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-07-06T12:52:22Z) - Robust Point Cloud Registration Framework Based on Deep Graph Matching [5.865029600972316]
3Dポイントクラウド登録は、コンピュータビジョンとロボティクスにおける基本的な問題です。
点群登録のための深層グラフマッチングに基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-07T04:20:29Z) - PointHop++: A Lightweight Learning Model on Point Sets for 3D
Classification [55.887502438160304]
ポイントホップ法は、Zhangらによって、教師なし特徴抽出を伴う3Dポイントクラウド分類のために提案された。
1)モデルパラメータ数の観点からモデルの複雑さを減らし,2)クロスエントロピー基準に基づいて自動的に識別特徴を順序付けする。
ModelNet40ベンチマークデータセットで実施した実験により、PointHop++法がディープニューラルネットワーク(DNN)ソリューションと同等に動作し、他の教師なし特徴抽出法を上回る性能を示す。
論文 参考訳(メタデータ) (2020-02-09T04:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。