FACT: Multinomial Misalignment Classification for Point Cloud Registration
- URL: http://arxiv.org/abs/2504.06627v1
- Date: Wed, 09 Apr 2025 07:01:57 GMT
- Title: FACT: Multinomial Misalignment Classification for Point Cloud Registration
- Authors: Ludvig Dillén, Per-Erik Forssén, Johan Edstedt,
- Abstract summary: We present FACT, a method for predicting alignment quality (i.e., registration error) of registered lidar point cloud pairs.<n>FACT extracts local features from a registered pair and processes them with a point transformer-based network to predict a misalignment class.
- Score: 1.256245863497516
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present FACT, a method for predicting alignment quality (i.e., registration error) of registered lidar point cloud pairs. This is useful e.g. for quality assurance of large, automatically registered 3D models. FACT extracts local features from a registered pair and processes them with a point transformer-based network to predict a misalignment class. We generalize prior work that study binary alignment classification of registration errors, by recasting it as multinomial misalignment classification. To achieve this, we introduce a custom regression-by-classification loss function that combines the cross-entropy and Wasserstein losses, and demonstrate that it outperforms both direct regression and prior binary classification. FACT successfully classifies point-cloud pairs registered with both the classical ICP and GeoTransformer, while other choices, such as standard point-cloud-quality metrics and registration residuals are shown to be poor choices for predicting misalignment. On a synthetically perturbed point-cloud task introduced by the CorAl method, we show that FACT achieves substantially better performance than CorAl. Finally, we demonstrate how FACT can assist experts in correcting misaligned point-cloud maps. Our code is available at https://github.com/LudvigDillen/FACT_for_PCMC.
Related papers
- Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - A Strong Baseline for Point Cloud Registration via Direct Superpoints Matching [7.308509114539376]
We propose a simple and effective baseline to find correspondences of superpoints in a global matching manner.
Our simple yet effective baseline shows comparable or even better results than state-of-the-art methods on three datasets.
arXiv Detail & Related papers (2023-07-03T21:33:40Z) - ProTeCt: Prompt Tuning for Taxonomic Open Set Classification [59.59442518849203]
Few-shot adaptation methods do not fare well in the taxonomic open set (TOS) setting.
We propose a prompt tuning technique that calibrates the hierarchical consistency of model predictions.
A new Prompt Tuning for Hierarchical Consistency (ProTeCt) technique is then proposed to calibrate classification across label set granularities.
arXiv Detail & Related papers (2023-06-04T02:55:25Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Large-scale Point Cloud Registration Based on Graph Matching
Optimization [30.92028761652611]
We propose a underlineGraph underlineMatching underlineOptimization based underlineNetwork.
The proposed method has been evaluated on the 3DMatch/3DLoMatch benchmarks and the KITTI benchmark.
arXiv Detail & Related papers (2023-02-12T03:29:35Z) - Robust Point Cloud Registration Framework Based on Deep Graph
Matching(TPAMI Version) [13.286247750893681]
3D point cloud registration is a fundamental problem in computer vision and robotics.
We propose a novel deep graph matching-based framework for point cloud registration.
arXiv Detail & Related papers (2022-11-09T06:05:25Z) - Data Augmentation-free Unsupervised Learning for 3D Point Cloud
Understanding [61.30276576646909]
We propose an augmentation-free unsupervised approach for point clouds to learn transferable point-level features via soft clustering, named SoftClu.
We exploit the affiliation of points to their clusters as a proxy to enable self-training through a pseudo-label prediction task.
arXiv Detail & Related papers (2022-10-06T10:18:16Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - REGTR: End-to-end Point Cloud Correspondences with Transformers [79.52112840465558]
We conjecture that attention mechanisms can replace the role of explicit feature matching and RANSAC.
We propose an end-to-end framework to directly predict the final set of correspondences.
Our approach achieves state-of-the-art performance on 3DMatch and ModelNet benchmarks.
arXiv Detail & Related papers (2022-03-28T06:01:00Z) - Robust Point Cloud Registration Framework Based on Deep Graph Matching [5.865029600972316]
3D point cloud registration is a fundamental problem in computer vision and robotics.
We propose a novel deep graph matchingbased framework for point cloud registration.
arXiv Detail & Related papers (2021-03-07T04:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.