論文の概要: Smart filter aided domain adversarial neural network for fault diagnosis
in noisy industrial scenarios
- arxiv url: http://arxiv.org/abs/2307.01429v2
- Date: Fri, 29 Sep 2023 01:56:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-02 18:08:04.939845
- Title: Smart filter aided domain adversarial neural network for fault diagnosis
in noisy industrial scenarios
- Title(参考訳): 産業シナリオにおける障害診断のためのスマートフィルタを用いたドメイン対向ニューラルネットワーク
- Authors: Baorui Dai, Ga\"etan Frusque, Tianfu Li, Qi Li, Olga Fink
- Abstract要約: 本稿では,スマートフィルタ支援ドメイン適応ニューラルネットワーク (SFDANN) と呼ばれる非教師付きドメイン適応 (UDA) 手法を提案する。
提案手法は、2つのステップから構成される。第1ステップでは、時間周波数領域におけるソースとターゲットドメインデータの類似性を動的に適用するスマートフィルタを開発する。
2番目のステップでは、スマートフィルタによって再構成されたデータをドメイン逆ニューラルネットワーク(DANN)に入力する。
- 参考スコア(独自算出の注目度): 11.094903196524404
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of unsupervised domain adaptation (UDA)-based fault diagnosis
methods has shown significant efficacy in industrial settings, facilitating the
transfer of operational experience and fault signatures between different
operating conditions, different units of a fleet or between simulated and real
data. However, in real industrial scenarios, unknown levels and types of noise
can amplify the difficulty of domain alignment, thus severely affecting the
diagnostic performance of deep learning models. To address this issue, we
propose an UDA method called Smart Filter-Aided Domain Adversarial Neural
Network (SFDANN) for fault diagnosis in noisy industrial scenarios. The
proposed methodology comprises two steps. In the first step, we develop a smart
filter that dynamically enforces similarity between the source and target
domain data in the time-frequency domain. This is achieved by combining a
learnable wavelet packet transform network (LWPT) and a traditional wavelet
packet transform module. In the second step, we input the data reconstructed by
the smart filter into a domain adversarial neural network (DANN). To learn
domain-invariant and discriminative features, the learnable modules of SFDANN
are trained in a unified manner with three objectives: time-frequency feature
proximity, domain alignment, and fault classification. We validate the
effectiveness of the proposed SFDANN method based on two fault diagnosis cases:
one involving fault diagnosis of bearings in noisy environments and another
involving fault diagnosis of slab tracks in a train-track-bridge coupling
vibration system, where the transfer task involves transferring from numerical
simulations to field measurements. Results show that compared to other
representative state of the art UDA methods, SFDANN exhibits superior
performance and remarkable stability.
- Abstract(参考訳): 非教師なし領域適応(UDA)に基づく障害診断法の適用は、異なる運用条件、異なる運用単位、シミュレーションデータ、実データ間の運用経験と障害署名の転送を容易にし、産業環境において大きな効果を示した。
しかし、実際の産業シナリオでは、未知のレベルやノイズの種類がドメインアライメントの難しさを増幅し、深層学習モデルの診断性能に重大な影響を及ぼす可能性がある。
この問題に対処するため, ノイズの多い産業シナリオにおける故障診断のためのスマートフィルタ支援ドメイン適応ニューラルネットワーク (SFDANN) を提案する。
提案手法は2段階からなる。
最初のステップでは、時間周波数領域におけるソースとターゲットドメインデータの類似性を動的に強制するスマートフィルタを開発する。
これは学習可能なウェーブレットパケット変換ネットワーク(lwpt)と従来のウェーブレットパケット変換モジュールを組み合わせたものである。
第2のステップでは、スマートフィルタによって再構成されたデータをドメイン逆ニューラルネットワーク(DANN)に入力する。
ドメイン不変性と識別的特徴を学習するために、SFDANNの学習可能なモジュールは、時間周波数特徴近接、ドメインアライメント、障害分類の3つの目的で統一的に訓練される。
本研究では, 列車-線路連成振動系において, 騒音環境下での軸受の故障診断とスラブ線路の故障診断の2つの事例に基づくSFDANN法の有効性を検証した。
その結果, 他のUDA法と比較すると, SFDANNは優れた性能と顕著な安定性を示した。
関連論文リスト
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - TDANet: A Novel Temporal Denoise Convolutional Neural Network With Attention for Fault Diagnosis [0.5277756703318045]
本稿では,音環境における故障診断性能を向上させるため,TDANet(Tunal Denoise Convolutional Neural Network With Attention)を提案する。
TDANetモデルは、その周期特性に基づいて1次元信号を2次元テンソルに変換し、マルチスケールの2次元畳み込みカーネルを用いて周期内および周期間の信号情報を抽出する。
CWRU (single sensor) とReal Aircraft Sensor Fault (multiple sensor) の2つのデータセットに対する評価は、TDANetモデルがノイズの多い環境下での診断精度において既存のディープラーニングアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-03-29T02:54:41Z) - Domain knowledge-informed Synthetic fault sample generation with Health
Data Map for cross-domain Planetary Gearbox Fault Diagnosis [7.88657961743755]
本稿では、健康データマップ(HDMap)を利用した2つの新しいドメイン知識情報合成手法を提案する。
HDMapは、惑星のギアボックスの振動信号を画像のようなマトリックスとして物理的に表現するために使用され、断層に関連した特徴を可視化することができる。
次に、CutPasteとFactPasteが適用され、ソースドメインから抽出されたドメイン知識と障害シグネチャを使用して、ターゲットドメインの健全なデータに基づいて障害サンプルを生成する。
論文 参考訳(メタデータ) (2023-05-31T05:37:17Z) - BSSAD: Towards A Novel Bayesian State-Space Approach for Anomaly
Detection in Multivariate Time Series [0.0]
ベイジアン状態空間異常検出(BSSAD)と呼ばれる新しい,革新的な異常検出手法を提案する。
提案手法の設計は,ベイズ状態空間アルゴリズムの次の状態予測における強みと,繰り返しニューラルネットワークとオートエンコーダの有効性を組み合わせたものである。
特に,粒子フィルタとアンサンブルカルマンフィルタのベイズ状態空間モデルの利用に着目する。
論文 参考訳(メタデータ) (2023-01-30T16:21:18Z) - DI-NIDS: Domain Invariant Network Intrusion Detection System [9.481792073140204]
コンピュータビジョンなどの様々な応用において、ドメイン適応技術は成功している。
しかし、ネットワーク侵入検出の場合、最先端のドメイン適応アプローチは成功に留まっている。
本稿では,複数のネットワークドメインから対数領域適応を用いて,ドメイン不変な特徴を抽出する。
論文 参考訳(メタデータ) (2022-10-15T10:26:22Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
本研究では,DDF(Domain Disentanglement Faster-RCNN)を設計し,タスク学習のための特徴のソース固有情報を排除した。
DDF法は,グローバルトリプルト・ディアンタングルメント(GTD)モジュールとインスタンス類似性・ディアンタングルメント(ISD)モジュールを用いて,グローバルおよびローカルステージでの機能ディアンタングルを容易にする。
提案手法は,4つのUDAオブジェクト検出タスクにおいて最先端の手法より優れており,広い適用性で有効であることが実証された。
論文 参考訳(メタデータ) (2022-01-06T05:43:01Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z) - Continuous Domain Adaptation with Variational Domain-Agnostic Feature
Replay [78.7472257594881]
非定常環境での学習は、機械学習における最大の課題の1つだ。
非定常性はタスクドリフトまたはドメインドリフトによって引き起こされる。
本稿では,3つのコンポーネントから構成されるアプローチである変分ドメインに依存しない特徴リプレイを提案する。
論文 参考訳(メタデータ) (2020-03-09T19:50:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。