論文の概要: Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment
- arxiv url: http://arxiv.org/abs/2407.14303v1
- Date: Fri, 19 Jul 2024 13:33:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 17:24:54.183903
- Title: Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment
- Title(参考訳): 時空間マネーアライメントを用いた多変量信号のマルチソース・テスト時間領域適応
- Authors: Théo Gnassounou, Antoine Collas, Rémi Flamary, Karim Lounici, Alexandre Gramfort,
- Abstract要約: コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
- 参考スコア(独自算出の注目度): 59.75420353684495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning applications on signals such as computer vision or biomedical data often face significant challenges due to the variability that exists across hardware devices or session recordings. This variability poses a Domain Adaptation (DA) problem, as training and testing data distributions often differ. In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities. This Optimal Transport (OT) based method adapts the cross-power spectrum density (cross-PSD) of multivariate signals by mapping them to the Wasserstein barycenter of source domains (multi-source DA). Predictions for new domains can be done with a filtering without the need for retraining a model with source data (test-time DA). We also study and discuss two special cases of the method, Temporal Monge Alignment (TMA) and Spatial Monge Alignment (SMA). Non-asymptotic concentration bounds are derived for the mappings estimation, which reveals a bias-plus-variance error structure with a variance decay rate of $\mathcal{O}(n_\ell^{-1/2})$ with $n_\ell$ the signal length. This theoretical guarantee demonstrates the efficiency of the proposed computational schema. Numerical experiments on multivariate biosignals and image data show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings. Notably, STMA is a pre-processing step complementary to state-of-the-art deep learning methods.
- Abstract(参考訳): コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば重大な課題に直面している。
この可変性は、データ分散のトレーニングとテストがしばしば異なるため、ドメイン適応(DA)問題を引き起こす。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
この最適輸送(OT)に基づく手法は、多変量信号のクロスパワースペクトル密度(クロスPSD)を、ソースドメイン(マルチソースDA)のWassersteinバリセンタにマッピングすることで適用する。
新しいドメインの予測は、ソースデータ(テストタイムDA)でモデルを再トレーニングすることなく、フィルタリングによって行うことができる。
また,TMA(Temporal Monge Alignment)とSMA(Spatial Monge Alignment)の2つの特殊な事例について検討した。
非漸近濃度境界は写像推定のために導出され、信号長が$n_\ell$の分散減衰率$\mathcal{O}(n_\ell^{-1/2})$のバイアス+分散誤差構造を示す。
この理論的な保証は、提案した計算スキーマの効率性を示す。
多変量バイオシグナーと画像データに関する数値実験により、STMAは、非常に異なる設定で取得したデータセット間で有意かつ一貫したパフォーマンス向上をもたらすことが示された。
特にSTMAは、最先端のディープラーニング手法を補完する前処理ステップである。
関連論文リスト
- Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
ドメイン適応メソッドは、$X$と$y$で分散シフトが同時に発生したときに苦労する。
本稿では,GOPSA(Geodesic Optimization for Predictive Shift Adaptation)と呼ばれる新しい手法を提案する。
GOPSAは、脳波のバイオメディカル応用のための混合効果モデリングと機械学習を併用する可能性を持っている。
論文 参考訳(メタデータ) (2024-07-04T12:15:42Z) - Partially-Observable Sequential Change-Point Detection for Autocorrelated Data via Upper Confidence Region [12.645304808491309]
逐次変化点検出のための状態空間モデル(AUCRSS)を用いたアダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・
SSMのオンライン推論のために部分的に観測可能なカルマンフィルタアルゴリズムを開発し、一般化された確率比テストに基づく変化点検出スキームを解析する。
論文 参考訳(メタデータ) (2024-03-30T02:32:53Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
本稿では,Mixing Model Stiefel Adaptation (MSA)と呼ばれる時系列データに対する新しいドメイン適応手法を提案する。
我々は、ドメイン間の等価な信号分散とペアの対応を確立することにより、ターゲット領域における豊富なラベルのないデータを利用して効果的な予測を行う。
MSAは、Cam-CANデータセットのMEG信号を用いて、タスクの変動を伴う脳年齢回帰の最近の手法より優れている。
論文 参考訳(メタデータ) (2024-01-24T19:04:49Z) - Smart filter aided domain adversarial neural network for fault diagnosis
in noisy industrial scenarios [11.094903196524404]
本稿では,スマートフィルタ支援ドメイン適応ニューラルネットワーク (SFDANN) と呼ばれる非教師付きドメイン適応 (UDA) 手法を提案する。
提案手法は、2つのステップから構成される。第1ステップでは、時間周波数領域におけるソースとターゲットドメインデータの類似性を動的に適用するスマートフィルタを開発する。
2番目のステップでは、スマートフィルタによって再構成されたデータをドメイン逆ニューラルネットワーク(DANN)に入力する。
論文 参考訳(メタデータ) (2023-07-04T01:47:00Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Deep Metric Learning for Unsupervised Remote Sensing Change Detection [60.89777029184023]
リモートセンシング変化検出(RS-CD)は、マルチテンポラルリモートセンシング画像(MT-RSI)から関連する変化を検出することを目的とする。
既存のRS-CD法の性能は、大規模な注釈付きデータセットのトレーニングによるものである。
本稿では,これらの問題に対処可能なディープメトリック学習に基づく教師なしCD手法を提案する。
論文 参考訳(メタデータ) (2023-03-16T17:52:45Z) - HFN: Heterogeneous Feature Network for Multivariate Time Series Anomaly
Detection [2.253268952202213]
MTSのためのヘテロジニアス特徴ネットワーク(HFN)に基づく,新しい半教師付き異常検出フレームワークを提案する。
まず、センサ埋め込みによって生成された埋め込み類似性グラフと、センサ値によって生成された特徴値類似性グラフを組み合わせて、時系列不均一グラフを構築する。
このアプローチは、ヘテロジニアスグラフ構造学習(HGSL)と表現学習の最先端技術を融合させる。
論文 参考訳(メタデータ) (2022-11-01T05:01:34Z) - Contrastive predictive coding for Anomaly Detection in Multi-variate
Time Series Data [6.463941665276371]
本稿では,MVTSデータにおける異常検出に向けて,TRL-CPC(Contrastive Predictive Coding)を用いた時系列表現学習を提案する。
まず,エンコーダ,自動回帰器,非線形変換関数を共同で最適化し,MVTSデータセットの表現を効果的に学習する。
論文 参考訳(メタデータ) (2022-02-08T04:25:29Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。