Equivalence, Identity, and Unitarity Checking in Black-Box Testing of Quantum Programs
- URL: http://arxiv.org/abs/2307.01481v2
- Date: Fri, 24 May 2024 08:53:44 GMT
- Title: Equivalence, Identity, and Unitarity Checking in Black-Box Testing of Quantum Programs
- Authors: Peixun Long, Jianjun Zhao,
- Abstract summary: Quantum programs exhibit inherent non-deterministic behavior, which poses significant challenges for error discovery compared to classical programs.
We present three novel algorithms specifically designed to address the challenges of equivalence, identity, and unitarity checking in black-box testing of quantum programs.
- Score: 2.8611507672161265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum programs exhibit inherent non-deterministic behavior, which poses more significant challenges for error discovery compared to classical programs. While several testing methods have been proposed for quantum programs, they often overlook fundamental questions in black-box testing. In this paper, we bridge this gap by presenting three novel algorithms specifically designed to address the challenges of equivalence, identity, and unitarity checking in black-box testing of quantum programs. We also explore optimization techniques for these algorithms, including specialized versions for equivalence and unitarity checking, and provide valuable insights into parameter selection to maximize performance and effectiveness. To evaluate the effectiveness of our proposed methods, we conducted comprehensive experimental evaluations, which demonstrate that our methods can rigorously perform equivalence, identity, and unitarity checking, offering robust support for black-box testing of quantum programs.
Related papers
- Quantum Testing in the Wild: A Case Study with Qiskit Algorithms [0.2678472239880052]
Quantum computing introduces a new computational paradigm, based on principles of superposition and entanglement.
With the increasing interest in the field, there are challenges and opportunities for academics and practitioners in terms of software engineering practices.
This paper presents an empirical study of testing patterns in quantum algorithms.
arXiv Detail & Related papers (2025-01-11T05:52:41Z) - Benefiting from Quantum? A Comparative Study of Q-Seg, Quantum-Inspired Techniques, and U-Net for Crack Segmentation [41.01256771536732]
This study evaluates the performance of quantum and quantum-inspired methods compared to classical models for crack segmentation.
Our results indicate that quantum-inspired and quantum methods offer a promising alternative for image segmentation, particularly for complex crack patterns, and could be applied in near-future applications.
arXiv Detail & Related papers (2024-10-14T16:51:59Z) - Concolic Testing of Quantum Programs [5.3611583388647635]
This paper presents the first concolic testing framework specifically designed for quantum programs.
The framework defines quantum conditional statements that quantify quantum states and presents a symbolization method for quantum variables.
arXiv Detail & Related papers (2024-05-08T07:32:19Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Which Quantum Circuit Mutants Shall Be Used? An Empirical Evaluation of Quantum Circuit Mutations [7.582630148228262]
We present a large-scale empirical evaluation with more than 700K faulty benchmarks (quantum circuits) generated by mutating 382 real-world quantum circuits.
Based on the results, we provide valuable insights for researchers to define systematic quantum mutation analysis techniques.
arXiv Detail & Related papers (2023-11-28T16:15:50Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Testing Multi-Subroutine Quantum Programs: From Unit Testing to Integration Testing [2.8611507672161265]
This paper addresses the specific testing requirements of multi-subroutine quantum programs.
We focus on testing criteria and techniques based on the whole testing process perspective.
We conduct comprehensive testing on typical quantum subroutines, including diverse mutants and randomized inputs.
arXiv Detail & Related papers (2023-06-30T05:31:56Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Experimental Implementation of an Efficient Test of Quantumness [49.588006756321704]
A test of quantumness is a protocol where a classical user issues challenges to a quantum device to determine if it exhibits non-classical behavior.
Recent attempts to implement such tests on current quantum computers rely on either interactive challenges with efficient verification, or non-interactive challenges with inefficient (exponential time) verification.
arXiv Detail & Related papers (2022-09-28T18:00:04Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.