Which Quantum Circuit Mutants Shall Be Used? An Empirical Evaluation of Quantum Circuit Mutations
- URL: http://arxiv.org/abs/2311.16913v3
- Date: Mon, 10 Jun 2024 15:21:34 GMT
- Title: Which Quantum Circuit Mutants Shall Be Used? An Empirical Evaluation of Quantum Circuit Mutations
- Authors: EƱaut Mendiluze Usandizaga, Tao Yue, Paolo Arcaini, Shaukat Ali,
- Abstract summary: We present a large-scale empirical evaluation with more than 700K faulty benchmarks (quantum circuits) generated by mutating 382 real-world quantum circuits.
Based on the results, we provide valuable insights for researchers to define systematic quantum mutation analysis techniques.
- Score: 7.582630148228262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a new research area, quantum software testing lacks systematic testing benchmarks to assess testing techniques' effectiveness. Recently, some open-source benchmarks and mutation analysis tools have emerged. However, there is insufficient evidence on how various quantum circuit characteristics (e.g., circuit depth, number of quantum gates), algorithms (e.g., Quantum Approximate Optimization Algorithm), and mutation characteristics (e.g., mutation operators) affect the detection of mutants in quantum circuits. Studying such relations is important to systematically design faulty benchmarks with varied attributes (e.g., the difficulty in detecting a seeded fault) to facilitate assessing the cost-effectiveness of quantum software testing techniques efficiently. To this end, we present a large-scale empirical evaluation with more than 700K faulty benchmarks (quantum circuits) generated by mutating 382 real-world quantum circuits. Based on the results, we provide valuable insights for researchers to define systematic quantum mutation analysis techniques. We also provide a tool to recommend mutants to users based on chosen characteristics (e.g., a quantum algorithm type) and the required difficulty of detecting mutants. Finally, we also provide faulty benchmarks that can already be used to assess the cost-effectiveness of quantum software testing techniques.
Related papers
- Application of ZX-calculus to Quantum Architecture Search [0.0]
This paper presents a novel approach to quantum architecture search by integrating the techniques of ZX-calculus with Genetic Programming (GP)
We propose a GP framework that utilizes mutations defined via ZX-calculus, a graphical language that can simplify visualizing and working with quantum circuits.
Our results indicate that certain ZX-calculus-based mutations perform significantly better than others for Quantum Architecture Search (QAS) in all metrics considered.
arXiv Detail & Related papers (2024-06-03T08:30:24Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - KetGPT -- Dataset Augmentation of Quantum Circuits using Transformers [1.236829197968612]
Quantum algorithms, represented as quantum circuits, can be used as benchmarks for assessing the performance of quantum systems.
Random circuits are, however, not representative benchmarks as they lack the inherent properties of real quantum algorithms.
This research aims to enhance the existing quantum circuit datasets by generating what we refer to as realistic-looking' circuits.
arXiv Detail & Related papers (2024-02-20T20:02:21Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Algorithmic Error Mitigation Scheme for Current Quantum Processors [0.0]
We present a hardware agnostic error mitigation algorithm for near term quantum processors inspired by the classical Lanczos method.
We demonstrate through numerical simulations and experiments on IBM Quantum hardware that the proposed scheme significantly increases the accuracy of cost functions evaluations.
arXiv Detail & Related papers (2020-08-25T09:48:20Z) - Robustness Verification of Quantum Classifiers [1.3534683694551501]
We define a formal framework for the verification and analysis of quantum machine learning algorithms against noises.
A robust bound is derived and an algorithm is developed to check whether or not a quantum machine learning algorithm is robust with respect to quantum training data.
Our approach is implemented on Google's Quantum classifier and can verify the robustness of quantum machine learning algorithms with respect to a small disturbance of noises.
arXiv Detail & Related papers (2020-08-17T11:56:23Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.