Review of Deep Learning-based Malware Detection for Android and Windows
System
- URL: http://arxiv.org/abs/2307.01494v1
- Date: Tue, 4 Jul 2023 06:02:04 GMT
- Title: Review of Deep Learning-based Malware Detection for Android and Windows
System
- Authors: Nazmul Islam and Seokjoo Shin
- Abstract summary: Most of the recent malware families are Artificial Intelligence (AI) enable and can deceive traditional anti-malware systems using different obfuscation techniques.
In this study we review two AI-enabled techniques for detecting malware in Windows and Android operating system, respectively.
- Score: 2.855485723554975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differentiating malware is important to determine their behaviors and level
of threat; as well as to devise defensive strategy against them. In response,
various anti-malware systems have been developed to distinguish between
different malwares. However, most of the recent malware families are Artificial
Intelligence (AI) enable and can deceive traditional anti-malware systems using
different obfuscation techniques. Therefore, only AI-enabled anti-malware
system is robust against these techniques and can detect different features in
the malware files that aid in malicious activities. In this study we review two
AI-enabled techniques for detecting malware in Windows and Android operating
system, respectively. Both the techniques achieved perfect accuracy in
detecting various malware families.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Obfuscated Memory Malware Detection [2.0618817976970103]
We show how Artificial Intelligence and Machine learning can be used to detect and mitigate these cyber-attacks induced by malware in specific obfuscated malware.
We propose a multi-class classification model to detect the three types of obfuscated malware with an accuracy of 89.07% using the Classic Random Forest algorithm.
arXiv Detail & Related papers (2024-08-23T06:39:15Z) - Obfuscated Malware Detection: Investigating Real-world Scenarios through Memory Analysis [0.0]
We propose a simple and cost-effective obfuscated malware detection system through memory dump analysis.
The study focuses on the CIC-MalMem-2022 dataset, designed to simulate real-world scenarios.
We evaluate the effectiveness of machine learning algorithms, such as decision trees, ensemble methods, and neural networks, in detecting obfuscated malware within memory dumps.
arXiv Detail & Related papers (2024-04-03T00:13:23Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Malware Detection and Prevention using Artificial Intelligence
Techniques [7.583480439784955]
Security has become a major issue due to the increase in malware activity.
In this study, we emphasize Artificial Intelligence (AI) based techniques for detecting and preventing malware activity.
arXiv Detail & Related papers (2022-06-26T02:41:46Z) - Adversarial Attacks against Windows PE Malware Detection: A Survey of
the State-of-the-Art [44.975088044180374]
This paper focuses on malware with the file format of portable executable (PE) in the family of Windows operating systems, namely Windows PE malware.
We first outline the general learning framework of Windows PE malware detection based on ML/DL.
We then highlight three unique challenges of performing adversarial attacks in the context of PE malware.
arXiv Detail & Related papers (2021-12-23T02:12:43Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
We propose an explainability-guided and model-agnostic testing framework for robustness of malware detectors.
We then use this framework to test several state-of-the-art malware detectors' abilities to detect manipulated malware.
Our findings shed light on the limitations of current malware detectors, as well as how they can be improved.
arXiv Detail & Related papers (2021-11-19T08:02:38Z) - A Novel Malware Detection Mechanism based on Features Extracted from
Converted Malware Binary Images [0.22843885788439805]
We use malware binary images and then extract different features from the same and then employ different ML-classifiers on the dataset thus obtained.
We show that this technique is successful in differentiating classes of malware based on the features extracted.
arXiv Detail & Related papers (2021-04-14T06:55:52Z) - Binary Black-box Evasion Attacks Against Deep Learning-based Static
Malware Detectors with Adversarial Byte-Level Language Model [11.701290164823142]
MalRNN is a novel approach to automatically generate evasive malware variants without restrictions.
MalRNN effectively evades three recent deep learning-based malware detectors and outperforms current benchmark methods.
arXiv Detail & Related papers (2020-12-14T22:54:53Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.