論文の概要: Knowledge Graph for NLG in the context of conversational agents
- arxiv url: http://arxiv.org/abs/2307.01548v1
- Date: Tue, 4 Jul 2023 08:03:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 17:48:00.510796
- Title: Knowledge Graph for NLG in the context of conversational agents
- Title(参考訳): 対話エージェントの文脈におけるNLGの知識グラフ
- Authors: Hussam Ghanem (ICB), Massinissa Atmani (ICB), Christophe Cruz (ICB)
- Abstract要約: 本稿では,グラフニューラルネットワーク,グラフ変換器,セq2seqモデルによる線形化など,グラフからテキストへの知識生成に使用されるさまざまなアーキテクチャについてレビューする。
我々は PLM 上での kg-to-text 生成のベンチマークデータセットを改良し,今後の作業における感情的・多言語的側面について検討することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of knowledge graphs (KGs) enhances the accuracy and comprehensiveness
of the responses provided by a conversational agent. While generating answers
during conversations consists in generating text from these KGs, it is still
regarded as a challenging task that has gained significant attention in recent
years. In this document, we provide a review of different architectures used
for knowledge graph-to-text generation including: Graph Neural Networks, the
Graph Transformer, and linearization with seq2seq models. We discuss the
advantages and limitations of each architecture and conclude that the choice of
architecture will depend on the specific requirements of the task at hand. We
also highlight the importance of considering constraints such as execution time
and model validity, particularly in the context of conversational agents. Based
on these constraints and the availability of labeled data for the domains of
DAVI, we choose to use seq2seq Transformer-based models (PLMs) for the
Knowledge Graph-to-Text Generation task. We aim to refine benchmark datasets of
kg-to-text generation on PLMs and to explore the emotional and multilingual
dimensions in our future work. Overall, this review provides insights into the
different approaches for knowledge graph-to-text generation and outlines future
directions for research in this area.
- Abstract(参考訳): 知識グラフ(KG)の使用により、会話エージェントが提供する応答の正確性と包括性が向上する。
会話中に回答を生成することは、これらのKGからテキストを生成することで成り立っているが、近年大きな注目を集めている課題であるとみなされている。
本稿では,グラフニューラルネットワーク,グラフトランスフォーマー,seq2seqモデルによる線形化など,知識グラフからテキストへの生成に使用されるさまざまなアーキテクチャのレビューを行う。
それぞれのアーキテクチャの利点と限界について議論し、アーキテクチャの選択は、目前にあるタスクの特定の要求に依存すると結論付ける。
また、特に会話エージェントの文脈において、実行時間やモデルの妥当性といった制約を考慮することの重要性を強調する。
これらの制約とDAVIのドメインに対するラベル付きデータの可用性に基づいて、知識グラフからテキスト生成タスクにSeq2seq Transformerベースモデル(PLM)を使用する。
我々は PLM 上での kg-to-text 生成のベンチマークデータセットの改良と,今後の作業における感情的・多言語的側面の探索を目的とする。
本総説では,知識グラフ・テキスト生成における様々なアプローチについて考察し,今後の研究の方向性について概説する。
関連論文リスト
- GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via Neighborhood Partitioning and Generative Subgraph Encoding [39.67113788660731]
グラフ対応LAnguage Models (GLaM) を開発するためのフレームワークを紹介する。
特定のグラフに基づく知識でモデルを構築することは、構造に基づく推論のためのモデルの能力を拡張することを実証する。
論文 参考訳(メタデータ) (2024-02-09T19:53:29Z) - Using Large Language Models for Zero-Shot Natural Language Generation
from Knowledge Graphs [4.56877715768796]
我々は,ChatGPTがWebNLG 2020の課題に対して,最先端のパフォーマンスを達成していることを示す。
また、LLMが解析しているデータについて既に知っていることと、出力テキストの品質との間には大きな関連性があることも示している。
論文 参考訳(メタデータ) (2023-07-14T12:45:03Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z) - Knowledge Graph-Augmented Language Models for Knowledge-Grounded
Dialogue Generation [58.65698688443091]
我々は、知識グラフ(KGs)を用いた文脈関連および知識基底対話を生成するためのフレームワークであるSUbgraph Retrieval-augmented GEneration (SURGE)を提案する。
我々のフレームワークはまずKGから関連するサブグラフを取得し、その後、検索したサブグラフによって条件付けられた単語の埋め込みを摂動することで、事実間の一貫性を強制する。
我々は,OpendialKGとKOMODISデータセットのSURGEフレームワークを検証し,KGの知識を忠実に反映した高品質な対話を生成することを示す。
論文 参考訳(メタデータ) (2023-05-30T08:36:45Z) - KGLM: Integrating Knowledge Graph Structure in Language Models for Link
Prediction [0.0]
我々は、異なるエンティティと関係型を区別することを学ぶ新しいエンティティ/リレーション埋め込み層を導入する。
知識グラフから抽出したトリプルを用いて、この追加埋め込み層を用いて言語モデルをさらに事前学習し、続いて標準微調整フェーズにより、ベンチマークデータセット上のリンク予測タスクに対して、新しい最先端のパフォーマンスが設定されることを示す。
論文 参考訳(メタデータ) (2022-11-04T20:38:12Z) - Deep Bidirectional Language-Knowledge Graph Pretraining [159.9645181522436]
DRAGONは、テキストとKGを大規模に融合した言語知識基盤モデルを事前学習するための自己教師型アプローチである。
我々のモデルは、入力としてテキストセグメントと関連するKGサブグラフのペアを取り、両モードから情報を双方向に融合する。
論文 参考訳(メタデータ) (2022-10-17T18:02:52Z) - Towards Complex Document Understanding By Discrete Reasoning [77.91722463958743]
VQA(Document Visual Question Answering)は、自然言語による質問に答えるために、視覚的に豊富なドキュメントを理解することを目的としている。
我々は3,067の文書ページと16,558の質問応答ペアからなる新しいドキュメントVQAデータセットTAT-DQAを紹介する。
我々は,テキスト,レイアウト,視覚画像など,多要素の情報を考慮に入れたMHSTという新しいモデルを開発し,異なるタイプの質問にインテリジェントに対処する。
論文 参考訳(メタデータ) (2022-07-25T01:43:19Z) - GAP: A Graph-aware Language Model Framework for Knowledge Graph-to-Text
Generation [3.593955557310285]
KG-to-text生成の最近の改善は、微調整タスクの性能を高めるために設計された補助的な事前訓練タスクによるものである。
ここでは、既存の事前学習言語モデルにグラフ認識要素を融合させることで、最先端のモデルより優れ、追加の事前学習タスクによって課されるギャップを埋めることができることを示す。
論文 参考訳(メタデータ) (2022-04-13T23:53:37Z) - EventNarrative: A large-scale Event-centric Dataset for Knowledge
Graph-to-Text Generation [8.216976747904726]
EventNarrativeは,約23万のグラフと,対応する自然言語テキストで構成されている。
私たちの目標は2つある – データが不足しているイベント中心の研究において,新たな基盤を突破する上で,研究者が明確に定義された大規模データセットを提供することです。
論文 参考訳(メタデータ) (2021-10-30T15:39:20Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
階層的にGNNコンポーネントを言語モデルのトランスフォーマーブロックと一緒にネストするGraphFormerを提案する。
提案したアーキテクチャでは、テキストエンコーディングとグラフ集約を反復的なワークフローに融合する。
さらに、プログレッシブ・ラーニング・ストラテジーを導入し、そのモデルが操作されたデータと元のデータに基づいて連続的に訓練され、グラフ上の情報を統合する能力を強化する。
論文 参考訳(メタデータ) (2021-05-06T12:20:41Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。