With Trail to Follow: Measurements of Real-world Non-fungible Token Phishing Attacks on Ethereum
- URL: http://arxiv.org/abs/2307.01579v2
- Date: Thu, 28 Mar 2024 07:51:04 GMT
- Title: With Trail to Follow: Measurements of Real-world Non-fungible Token Phishing Attacks on Ethereum
- Authors: Jingjing Yang, Jieli Liu, Jiajing Wu,
- Abstract summary: There has been growing anecdotal evidence that new means of NFT phishing attacks have emerged in ecosystem.
Most of the existing research focus on detecting phishing scam accounts for native cryptocurrency on the blockchain.
There is a lack of research in the area of phishing attacks of emerging NFTs.
- Score: 4.297180143942048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the popularity of Non-Fungible Tokens (NFTs), NFTs have become a new target of phishing attacks, posing a significant threat to the NFT trading ecosystem. There has been growing anecdotal evidence that new means of NFT phishing attacks have emerged in Ethereum ecosystem. Most of the existing research focus on detecting phishing scam accounts for native cryptocurrency on the blockchain, but there is a lack of research in the area of phishing attacks of emerging NFTs. Although a few studies have recently started to focus on the analysis and detection of NFT phishing attacks, NFT phishing attack means are diverse and little has been done to understand these various types of NFT phishing attacks. To the best of our knowledge, we are the first to conduct case retrospective analysis and measurement study of real-world historical NFT phishing attacks on Ethereum. By manually analyzing the existing scams reported by Chainabuse, we classify NFT phishing attacks into four patterns. For each pattern, we further investigate the tricks and working principles of them. Based on 469 NFT phishing accounts collected up until October 2022 from multiple channels, we perform a measurement study of on-chain transaction data crawled from Etherscan to characterizing NFT phishing scams by analyzing the modus operandi and preferences of NFT phishing scammers, as well as economic impacts and whereabouts of stolen NFTs. We classify NFT phishing transactions into one of the four patterns by log parsing and transaction record parsing. We find these phishing accounts stole 19,514 NFTs for a total profit of 8,858.431 ETH (around 18.57 million dollars). We also observe that scammers remain highly active in the last two years and favor certain categories and series of NFTs, accompanied with signs of gang theft.
Related papers
- Dissecting Payload-based Transaction Phishing on Ethereum [13.398858969125495]
payload-based transaction phishing (PTXPHISH) manipulates smart contract interactions through the execution of malicious payloads to deceive users.
PTXPHISH has rapidly emerged as a significant threat, leading to incidents that caused losses exceeding $70 million in 2023 reports.
We establish the first ground-truth PTXPHISH dataset, consisting of 5,000 phishing transactions.
We propose a rule-based multi-dimensional detection approach to identify PTXPHISH, achieving over 99% accuracy in the ground-truth dataset.
arXiv Detail & Related papers (2024-09-04T02:26:59Z) - Defending Against Weight-Poisoning Backdoor Attacks for Parameter-Efficient Fine-Tuning [57.50274256088251]
We show that parameter-efficient fine-tuning (PEFT) is more susceptible to weight-poisoning backdoor attacks.
We develop a Poisoned Sample Identification Module (PSIM) leveraging PEFT, which identifies poisoned samples through confidence.
We conduct experiments on text classification tasks, five fine-tuning strategies, and three weight-poisoning backdoor attack methods.
arXiv Detail & Related papers (2024-02-19T14:22:54Z) - The Dark Side of NFTs: A Large-Scale Empirical Study of Wash Trading [28.20696034160891]
We analyze 8,717,031 transfer events and 3,830,141 sale events from 2,701,883 NFTs.
We identify three types of NFT wash trading and propose identification algorithms.
We also provide insights from six aspects, i.e., marketplace design, profitability, NFT project design, payment token, user behavior, and NFT ecosystem.
arXiv Detail & Related papers (2023-12-19T19:29:24Z) - Unveiling the Risks of NFT Promotion Scams [24.54041279375181]
We study 439 promotion services (accounts) on Twitter that have collectively promoted 823 unique NFT projects.
More than 36% of these projects were fraudulent, comprising of phishing, rug pull, and pre-mint scams.
We develop a machine learning tool that was able to proactively detect 382 new fraudulent NFT projects on Twitter.
arXiv Detail & Related papers (2023-01-24T04:13:44Z) - Bubble or Not: Measurements, Analyses, and Findings on the Ethereum
ERC721 and ERC1155 Non-fungible Token Ecosystem [22.010657813215413]
The market capitalization of NFT reached 21.5 billion USD in 2021, almost 200 times of all previous transactions.
The rapid decline in NFT market fever in the second quarter of 2022 casts doubts on the ostensible boom in the NFT market.
By collecting data from the whole blockchain, we construct three graphs, namely NFT create graph, NFT transfer graph, and NFT hold graph, to characterize the NFT traders.
We propose new indicators to quantify the activeness and value of NFT and propose an algorithm that combines indicators and graph analyses to find bubble NFTs.
arXiv Detail & Related papers (2023-01-05T10:17:57Z) - A Game of NFTs: Characterizing NFT Wash Trading in the Ethereum Blockchain [53.8917088220974]
The Non-Fungible Token (NFT) market experienced explosive growth in 2021, with a monthly trade volume reaching $6 billion in January 2022.
Concerns have emerged about possible wash trading, a form of market manipulation in which one party repeatedly trades an NFT to inflate its volume artificially.
We find that wash trading affects 5.66% of all NFT collections, with a total artificial volume of $3,406,110,774.
arXiv Detail & Related papers (2022-12-02T15:03:35Z) - Token Spammers, Rug Pulls, and SniperBots: An Analysis of the Ecosystem of Tokens in Ethereum and in the Binance Smart Chain (BNB) [50.888293380932616]
We study the ecosystem of the tokens and liquidity pools.
We find that about 60% of tokens are active for less than one day.
We estimate that 1-day rug pulls generated $240 million in profits.
arXiv Detail & Related papers (2022-06-16T14:20:19Z) - Mapping the NFT revolution: market trends, trade networks and visual
features [0.25861007846258416]
Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items.
We analyse data concerning 6.1 million trades of 4.7 million NFTs between June 23, 2017 and April 27, 2021.
arXiv Detail & Related papers (2021-06-01T17:25:32Z) - ONION: A Simple and Effective Defense Against Textual Backdoor Attacks [91.83014758036575]
Backdoor attacks are a kind of emergent training-time threat to deep neural networks (DNNs)
In this paper, we propose a simple and effective textual backdoor defense named ONION.
Experiments demonstrate the effectiveness of our model in defending BiLSTM and BERT against five different backdoor attacks.
arXiv Detail & Related papers (2020-11-20T12:17:21Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
Phishing attacks have become the most used technique in the online scams, initiating more than 91% of cyberattacks, from 2012 onwards.
This study reviews how Phishing and Spear Phishing attacks are carried out by the phishers, through 5 steps which magnify the outcome.
arXiv Detail & Related papers (2020-05-31T18:10:09Z) - Defending against Backdoor Attack on Deep Neural Networks [98.45955746226106]
We study the so-called textitbackdoor attack, which injects a backdoor trigger to a small portion of training data.
Experiments show that our method could effectively decrease the attack success rate, and also hold a high classification accuracy for clean images.
arXiv Detail & Related papers (2020-02-26T02:03:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.