論文の概要: MOPO-LSI: A User Guide
- arxiv url: http://arxiv.org/abs/2307.01719v2
- Date: Wed, 12 Jul 2023 12:58:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-13 18:37:18.278066
- Title: MOPO-LSI: A User Guide
- Title(参考訳): MOPO-LSI: ユーザガイド
- Authors: Yong Zheng, Kumar Neelotpal Shukla, Jasmine Xu, David (Xuejun) Wang,
Michael O'Leary
- Abstract要約: この文書はMOPO-LSIバージョン1.0のユーザガイドを提供する。
問題設定、ワークフロー、設定中のハイパーパラメータが含まれる。
- 参考スコア(独自算出の注目度): 6.352264764099531
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: MOPO-LSI is an open-source Multi-Objective Portfolio Optimization Library for
Sustainable Investments. This document provides a user guide for MOPO-LSI
version 1.0, including problem setup, workflow and the hyper-parameters in
configurations.
- Abstract(参考訳): MOPO-LSIは、持続可能な投資のためのオープンソースの多目的ポートフォリオ最適化ライブラリである。
この文書はMOPO-LSIバージョン1.0のユーザガイドを提供し、問題設定、ワークフロー、設定のハイパーパラメータを含む。
関連論文リスト
- HyperDPO: Hypernetwork-based Multi-Objective Fine-Tuning Framework [11.342075103251576]
HyperDPOは、DPO(Direct Preference Optimization)技術を拡張するハイパーネットワークベースのアプローチである。
DPOのBradley-Terry-LuceモデルをPockett-Luceモデルに置き換えることで、我々のフレームワークは幅広いMOFTタスクを処理できる。
論文 参考訳(メタデータ) (2024-10-10T19:06:39Z) - Sketch: A Toolkit for Streamlining LLM Operations [51.33202045501429]
大規模言語モデル(LLM)は大きな成功を収めた。
アウトプットフォーマットの柔軟性は、モデルのアウトプットを制御および活用する上での課題を引き起こします。
スケッチ(Sketch)は、多種多様な分野にわたるLCM操作を合理化するための革新的なツールキットである。
論文 参考訳(メタデータ) (2024-09-05T08:45:44Z) - Harnessing Multimodal Large Language Models for Multimodal Sequential Recommendation [21.281471662696372]
本稿では,MLLM-MSRモデルを提案する。
動的ユーザの嗜好を捉えるために,2段階のユーザ選好要約法を設計する。
次に、ユーザ嗜好の動的変化を捉えるために、繰り返しユーザー嗜好要約生成パラダイムを用いる。
論文 参考訳(メタデータ) (2024-08-19T04:44:32Z) - SoupLM: Model Integration in Large Language and Multi-Modal Models [51.12227693121004]
大規模言語モデル(LLM)の訓練には、かなりの計算資源が必要である。
既存の公開LLMは通常、さまざまなタスクにまたがる、多種多様なプライベートにキュレートされたデータセットで事前トレーニングされる。
論文 参考訳(メタデータ) (2024-07-11T05:38:15Z) - LLMBox: A Comprehensive Library for Large Language Models [109.15654830320553]
本稿では,大規模言語モデル (LLM) の開発, 使用, 評価を容易にするために, 包括的で統一されたライブラリ LLMBox を提案する。
このライブラリには,(1)多様なトレーニング戦略の柔軟な実装を支援する統一データインターフェース,(2)広範囲なタスクやデータセット,モデルをカバーする包括的な評価,(3)ユーザフレンドリさや効率性など,より実践的な考慮,という3つのメリットがある。
論文 参考訳(メタデータ) (2024-07-08T02:39:33Z) - Towards Modular LLMs by Building and Reusing a Library of LoRAs [64.43376695346538]
マルチタスクデータに対して最適なアダプタライブラリを構築する方法について検討する。
モデルベースクラスタリング(MBC)を導入し,パラメータの類似性に基づいてタスクをグループ化する手法を提案する。
ライブラリを再使用するために,最も関連性の高いアダプタの動的選択を可能にする新しいゼロショットルーティング機構であるArrowを提案する。
論文 参考訳(メタデータ) (2024-05-18T03:02:23Z) - FOFO: A Benchmark to Evaluate LLMs' Format-Following Capability [70.84333325049123]
FoFoは、大規模言語モデル(LLM)の複雑なドメイン固有のフォーマットに従う能力を評価するための先駆的なベンチマークである。
本稿では,大規模言語モデル(LLM)の複雑なドメイン固有フォーマットに従う能力を評価するための先駆的ベンチマークであるFoFoを提案する。
論文 参考訳(メタデータ) (2024-02-28T19:23:27Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - Using Large Language Models for Hyperparameter Optimization [29.395931874196805]
本稿では,高パラメータ最適化(HPO)における基礎的大規模言語モデル(LLM)の利用について検討する。
標準ベンチマークに対する実証的な評価により,LLMは従来のHPO手法に適合あるいは優れることがわかった。
論文 参考訳(メタデータ) (2023-12-07T18:46:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。