論文の概要: Using Large Language Models for Hyperparameter Optimization
- arxiv url: http://arxiv.org/abs/2312.04528v2
- Date: Mon, 11 Nov 2024 17:30:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:05:38.757096
- Title: Using Large Language Models for Hyperparameter Optimization
- Title(参考訳): ハイパーパラメータ最適化のための大規模言語モデルの利用
- Authors: Michael R. Zhang, Nishkrit Desai, Juhan Bae, Jonathan Lorraine, Jimmy Ba,
- Abstract要約: 本稿では,高パラメータ最適化(HPO)における基礎的大規模言語モデル(LLM)の利用について検討する。
標準ベンチマークに対する実証的な評価により,LLMは従来のHPO手法に適合あるいは優れることがわかった。
- 参考スコア(独自算出の注目度): 29.395931874196805
- License:
- Abstract: This paper explores the use of foundational large language models (LLMs) in hyperparameter optimization (HPO). Hyperparameters are critical in determining the effectiveness of machine learning models, yet their optimization often relies on manual approaches in limited-budget settings. By prompting LLMs with dataset and model descriptions, we develop a methodology where LLMs suggest hyperparameter configurations, which are iteratively refined based on model performance. Our empirical evaluations on standard benchmarks reveal that within constrained search budgets, LLMs can match or outperform traditional HPO methods like Bayesian optimization across different models on standard benchmarks. Furthermore, we propose to treat the code specifying our model as a hyperparameter, which the LLM outputs and affords greater flexibility than existing HPO approaches.
- Abstract(参考訳): 本稿では,超パラメータ最適化(HPO)における基礎的大規模言語モデル(LLM)の利用について検討する。
ハイパーパラメータは機械学習モデルの有効性を決定する上で重要であるが、その最適化は限られた予算設定での手動アプローチに依存することが多い。
データセットとモデル記述でLLMを推し進めることにより,LLMがモデル性能に基づいて反復的に洗練されるハイパーパラメータ構成を提案する手法を開発した。
標準ベンチマークに対する実証的な評価は、制約付き検索予算内では、LLMは標準ベンチマーク上の異なるモデル間でベイズ最適化のような従来のHPO手法と一致または性能が良くなることを示している。
さらに、LLMが出力し、既存のHPOアプローチよりも柔軟性の高いハイパーパラメータとして、我々のモデルを規定するコードを扱うことを提案する。
関連論文リスト
- MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
大規模言語モデル(LLM)は、広範なテキストコーパスから広範な知識と顕著な能力を取得する。
LLMをより使いやすくするためには、それらを人間の好みに合わせることが不可欠である。
提案手法は,LLMが推論時に指定される様々な明示的あるいは暗黙的な選好と動的に整合するのを支援することを目的としている。
論文 参考訳(メタデータ) (2024-10-18T05:31:13Z) - In-the-loop Hyper-Parameter Optimization for LLM-Based Automated Design of Heuristics [0.020482269513546456]
大規模言語モデル(LLM)は、(メタ)ヒューリスティックを自動的に生成し最適化する大きな可能性を示している。
本稿では,オープンソースのLLaMEAフレームワークとハイパー進化最適化(HPO)手法を統合した新しいハイブリッドアプローチであるLLaMEA-HPOを提案する。
論文 参考訳(メタデータ) (2024-10-07T14:04:31Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
本稿では,Large Language Models (LLM) の微調整について検討する。
従来の自然言語処理(NLP)モデルから、AIにおける彼らの重要な役割まで、LLMの歴史的進化を概説している。
本報告では, 微調整LDMのための構造化7段パイプラインについて紹介する。
論文 参考訳(メタデータ) (2024-08-23T14:48:02Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
本稿では,大規模言語モデル(LLM)に基づくプロンプトの設計について検討する。
モデルパラメータ学習における2つの重要な要素を同定する。
特に、勾配に基づく最適化から理論的な枠組みや学習手法を借用し、改良された戦略を設計する。
論文 参考訳(メタデータ) (2024-02-27T15:05:32Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
我々は,LLMに基づくPrompt Optimizationの実際のメカニズムを明らかにするために研究を行っている。
以上の結果から, LLMは, 反射中の誤差の真の原因を特定するのに苦慮し, 自己の事前知識に偏っていることが明らかとなった。
我々は、より制御可能な方法でターゲットモデルの振舞いを直接最適化する新しい「自動振舞い最適化」パラダイムを導入する。
論文 参考訳(メタデータ) (2024-02-03T09:48:54Z) - Optimizing Hyperparameters with Conformal Quantile Regression [7.316604052864345]
本稿では,観測ノイズについて最小限の仮定を行う等化量子レグレッションを活用することを提案する。
これは経験的ベンチマークでのHPO収束を早くすることを意味する。
論文 参考訳(メタデータ) (2023-05-05T15:33:39Z) - Fair Bayesian Optimization [25.80374249896801]
機械学習(ML)モデルの性能を最適化するために、一般的な制約付きベイズ最適化フレームワークを導入する。
我々は、ランダムな森林、ブースティング、ニューラルネットワークなど、さまざまな人気モデルに公平性制約のあるBOを適用した。
提案手法は,モデル固有の公正性制約を強制する特殊な手法と競合することを示す。
論文 参考訳(メタデータ) (2020-06-09T08:31:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。