Local primordial non-Gaussianity from the large-scale clustering of photometric DESI luminous red galaxies
- URL: http://arxiv.org/abs/2307.01753v3
- Date: Tue, 25 Jun 2024 04:39:44 GMT
- Title: Local primordial non-Gaussianity from the large-scale clustering of photometric DESI luminous red galaxies
- Authors: Mehdi Rezaie, Ashley J. Ross, Hee-Jong Seo, Hui Kong, Anna Porredon, Lado Samushia, Edmond Chaussidon, Alex Krolewski, Arnaud de Mattia, Florian Beutler, Jessica Nicole Aguilar, Steven Ahlen, Shadab Alam, Santiago Avila, Benedict Bahr-Kalus, Jose Bermejo-Climent, David Brooks, Todd Claybaugh, Shaun Cole, Kyle Dawson, Axel de la Macorra, Peter Doel, Andreu Font-Ribera, Jaime E. Forero-Romero, Satya Gontcho A Gontcho, Julien Guy, Klaus Honscheid, Dragan Huterer, Theodore Kisner, Martin Landriau, Michael Levi, Marc Manera, Aaron Meisner, Ramon Miquel, Eva-Maria Mueller, Adam Myers, Jeffrey A. Newman, Jundan Nie, Nathalie Palanque-Delabrouille, Will Percival, Claire Poppett, Graziano Rossi, Eusebio Sanchez, Michael Schubnell, Gregory Tarlé, Benjamin Alan Weaver, Christophe Yèche, Zhimin Zhou, Hu Zou,
- Abstract summary: We use angular clustering of luminous red galaxies from the Dark Energy Spectroscopic Instrument (DESI) imaging surveys to constrain the local primordial non-Gaussianity parameter $fnl$.
Our sample comprises over 12 million targets, covering 14,000 square degrees of the sky, with redshifts in the range 0.2 z 1.35$.
We identify Galactic extinction, survey depth, and astronomical seeing as the primary sources of systematic error, and employ linear regression and artificial neural networks to alleviate non-cosmological excess clustering on large scales.
- Score: 5.534428269834764
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We use angular clustering of luminous red galaxies from the Dark Energy Spectroscopic Instrument (DESI) imaging surveys to constrain the local primordial non-Gaussianity parameter $\fnl$. Our sample comprises over 12 million targets, covering 14,000 square degrees of the sky, with redshifts in the range $0.2< z < 1.35$. We identify Galactic extinction, survey depth, and astronomical seeing as the primary sources of systematic error, and employ linear regression and artificial neural networks to alleviate non-cosmological excess clustering on large scales. Our methods are tested against simulations with and without $\fnl$ and systematics, showing superior performance of the neural network treatment. The neural network with a set of nine imaging property maps passes our systematic null test criteria, and is chosen as the fiducial treatment. Assuming the universality relation, we find $\fnl = 34^{+24(+50)}_{-44(-73)}$ at 68\%(95\%) confidence. We apply a series of robustness tests (e.g., cuts on imaging, declination, or scales used) that show consistency in the obtained constraints. We study how the regression method biases the measured angular power-spectrum and degrades the $\fnl$ constraining power. The use of the nine maps more than doubles the uncertainty compared to using only the three primary maps in the regression. Our results thus motivate the development of more efficient methods that avoid over-correction, protect large-scale clustering information, and preserve constraining power. Additionally, our results encourage further studies of $\fnl$ with DESI spectroscopic samples, where the inclusion of 3D clustering modes should help separate imaging systematics and lessen the degradation in the $\fnl$ uncertainty.
Related papers
- Hierarchical Inference of the Lensing Convergence from Photometric
Catalogs with Bayesian Graph Neural Networks [0.0]
We introduce fluctuations on galaxy-galaxy lensing scales of $sim$1$''$ and extract random sightlines to train our BGNN.
For each test set of 1,000 sightlines, the BGNN infers the individual $kappa$ posteriors, which we combine in a hierarchical Bayesian model.
For a test field well sampled by the training set, the BGNN recovers the population mean of $kappa$ precisely and without bias.
arXiv Detail & Related papers (2022-11-15T00:29:20Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Primordial non-Gaussianity from the Completed SDSS-IV extended Baryon
Oscillation Spectroscopic Survey I: Catalogue Preparation and Systematic
Mitigation [3.2855185490071444]
We investigate the large-scale clustering of the final spectroscopic sample of quasars from the recently completed extended Baryon Oscillation Spectroscopic Survey (eBOSS)
We develop a neural network-based approach to mitigate spurious fluctuations in the density field caused by spatial variations in the quality of the imaging data used to select targets for follow-up spectroscopy.
arXiv Detail & Related papers (2021-06-25T16:01:19Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - SCOP: Scientific Control for Reliable Neural Network Pruning [127.20073865874636]
This paper proposes a reliable neural network pruning algorithm by setting up a scientific control.
Redundant filters can be discovered in the adversarial process of different features.
Our method can reduce 57.8% parameters and 60.2% FLOPs of ResNet-101 with only 0.01% top-1 accuracy loss on ImageNet.
arXiv Detail & Related papers (2020-10-21T03:02:01Z) - Deep learning for gravitational-wave data analysis: A resampling
white-box approach [62.997667081978825]
We apply Convolutional Neural Networks (CNNs) to detect gravitational wave (GW) signals of compact binary coalescences, using single-interferometer data from LIGO detectors.
CNNs were quite precise to detect noise but not sensitive enough to recall GW signals, meaning that CNNs are better for noise reduction than generation of GW triggers.
arXiv Detail & Related papers (2020-09-09T03:28:57Z) - Effective Version Space Reduction for Convolutional Neural Networks [61.84773892603885]
In active learning, sampling bias could pose a serious inconsistency problem and hinder the algorithm from finding the optimal hypothesis.
We examine active learning with convolutional neural networks through the principled lens of version space reduction.
arXiv Detail & Related papers (2020-06-22T17:40:03Z) - The Generalized Lasso with Nonlinear Observations and Generative Priors [63.541900026673055]
We make the assumption of sub-Gaussian measurements, which is satisfied by a wide range of measurement models.
We show that our result can be extended to the uniform recovery guarantee under the assumption of a so-called local embedding property.
arXiv Detail & Related papers (2020-06-22T16:43:35Z) - DeepMerge: Classifying High-redshift Merging Galaxies with Deep Neural
Networks [0.0]
We show the use of convolutional neural networks (CNNs) for the task of distinguishing between merging and non-merging galaxies in simulated images.
We extract images of merging and non-merging galaxies from the Illustris-1 cosmological simulation and apply observational and experimental noise.
The test set classification accuracy of the CNN is $79%$ for pristine and $76%$ for noisy.
arXiv Detail & Related papers (2020-04-24T20:36:06Z) - Revisiting Saliency Metrics: Farthest-Neighbor Area Under Curve [23.334584322129142]
Saliency detection has been widely studied because it plays an important role in various vision applications.
It is difficult to evaluate saliency systems because each measure has its own bias.
We propose a new saliency metric based on the AUC property, which aims at sampling a more directional negative set for evaluation.
arXiv Detail & Related papers (2020-02-24T20:55:42Z) - Limited Angle Tomography for Transmission X-Ray Microscopy Using Deep
Learning [12.991428974915795]
Deep learning is applied to limited angle reconstruction in X-ray microscopy for the first time.
The U-Net, the state-of-the-art neural network in biomedical imaging, is trained from synthetic data.
The proposed method remarkably improves the 3-D visualization of the subcellular structures in the chlorella cell.
arXiv Detail & Related papers (2020-01-08T12:11:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.