論文の概要: Unsupervised Spectral Demosaicing with Lightweight Spectral Attention
Networks
- arxiv url: http://arxiv.org/abs/2307.01990v1
- Date: Wed, 5 Jul 2023 02:45:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 15:22:59.512980
- Title: Unsupervised Spectral Demosaicing with Lightweight Spectral Attention
Networks
- Title(参考訳): 軽量スペクトルアテンションネットワークを用いた教師なしスペクトルデモサイシング
- Authors: Kai Feng, Yongqiang Zhao, Seong G. Kong, and Haijin Zeng
- Abstract要約: 本稿では、教師なしで訓練された深層学習に基づくスペクトル復調手法を提案する。
提案手法は, 空間歪み抑制, スペクトル忠実度, 頑健性, 計算コストの観点から, 従来の教師なし手法よりも優れていた。
- 参考スコア(独自算出の注目度): 6.7433262627741914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a deep learning-based spectral demosaicing technique
trained in an unsupervised manner. Many existing deep learning-based techniques
relying on supervised learning with synthetic images, often underperform on
real-world images especially when the number of spectral bands increases.
According to the characteristics of the spectral mosaic image, this paper
proposes a mosaic loss function, the corresponding model structure, a
transformation strategy, and an early stopping strategy, which form a complete
unsupervised spectral demosaicing framework. A challenge in real-world spectral
demosaicing is inconsistency between the model parameters and the computational
resources of the imager. We reduce the complexity and parameters of the
spectral attention module by dividing the spectral attention tensor into
spectral attention matrices in the spatial dimension and spectral attention
vector in the channel dimension, which is more suitable for unsupervised
framework. This paper also presents Mosaic25, a real 25-band hyperspectral
mosaic image dataset of various objects, illuminations, and materials for
benchmarking. Extensive experiments on synthetic and real-world datasets
demonstrate that the proposed method outperforms conventional unsupervised
methods in terms of spatial distortion suppression, spectral fidelity,
robustness, and computational cost.
- Abstract(参考訳): 本稿では、教師なしで訓練された深層学習に基づくスペクトル復調手法を提案する。
既存のディープラーニングベースの技術の多くは、合成画像による教師付き学習に依存しており、特にスペクトルバンド数が増加すると実世界画像に過小評価されることが多い。
本稿では,スペクトルモザイク画像の特徴に基づいて,モザイク損失関数,対応するモデル構造,変換戦略,および完全な教師なしスペクトル復調フレームワークを形成する早期停止戦略を提案する。
実世界のスペクトル復調における課題は、モデルパラメータと画像の計算資源との整合性である。
スペクトル注意テンソルを空間次元のスペクトル注意行列とチャネル次元のスペクトル注意ベクトルに分割することでスペクトル注意モジュールの複雑さとパラメータを低減し、教師なしの枠組みに適している。
本稿では,25バンド超スペクトルモザイク画像データセットであるモザイク25についても述べる。
提案手法は, 空間歪み抑制, スペクトル忠実度, 頑健性, 計算コストの観点から, 従来の教師なし手法よりも優れていることを示す。
関連論文リスト
- Spectral Graph Reasoning Network for Hyperspectral Image Classification [0.43512163406551996]
畳み込みニューラルネットワーク(CNN)は、ハイパースペクトル画像(HSI)分類において顕著な性能を達成した。
本稿では、2つの重要なモジュールからなるスペクトルグラフ推論ネットワーク(SGR)学習フレームワークを提案する。
2つのHSIデータセットの実験により、提案したアーキテクチャが分類精度を大幅に改善できることが示されている。
論文 参考訳(メタデータ) (2024-07-02T20:29:23Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
ほとんどの融合法は、融合アルゴリズム自体にのみ焦点をあて、分解モデルを見落としている。
我々は、LR-HSIとHR-MSIの劣化をモデル化するための物理インスパイアされた劣化モデル(PIDM)を提案する。
提案したPIDMは,既存の核融合法における核融合性能を向上させることができる。
論文 参考訳(メタデータ) (2024-02-04T09:07:28Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
ハイパースペクトル画像(HSI)再構成は、2次元計測から3次元空間スペクトル信号を復元することを目的としている。
スペクトル間相互作用のモデル化は、HSI再構成に有用である。
Mask-guided Spectral-wise Transformer (MST) は,HSI再構成のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-15T16:59:48Z) - Spectral Splitting and Aggregation Network for Hyperspectral Face
Super-Resolution [82.59267937569213]
高分解能(HR)ハイパースペクトル顔画像は、制御されていない条件下での顔関連コンピュータビジョンタスクにおいて重要な役割を果たす。
本稿では,ハイパースペクトル顔画像への深層学習手法の適用方法について検討する。
限られたトレーニングサンプルを用いたHFSRのためのスペクトル分割集約ネットワーク(SSANet)を提案する。
論文 参考訳(メタデータ) (2021-08-31T02:13:00Z) - LADMM-Net: An Unrolled Deep Network For Spectral Image Fusion From
Compressive Data [6.230751621285322]
ハイパースペクトル(HS)およびマルチスペクトル(MS)画像融合は、低空間分解能HS画像と低スペクトル分解能MS画像から高分解能スペクトル画像を推定することを目的とする。
本研究では,HSおよびMS圧縮測定による融合問題の解法として,アルゴリズムアンロール法に基づくディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-03-01T12:04:42Z) - Spectral Response Function Guided Deep Optimization-driven Network for
Spectral Super-resolution [20.014293172511074]
本稿では、より深い空間スペクトルを持つ最適化駆動畳み込みニューラルネットワーク(CNN)を提案する。
自然およびリモートセンシング画像を含む2種類のデータセットに対する実験により,提案手法のスペクトル強調効果が示された。
論文 参考訳(メタデータ) (2020-11-19T07:52:45Z) - Spatial-Spectral Manifold Embedding of Hyperspectral Data [43.479889860715275]
本稿では,空間情報とスペクトル情報を同時に考慮した新しいハイパースペクトル埋め込み手法を提案する。
空間スペクトル多様体埋め込み(SSME)は、パッチベースの方法で空間情報とスペクトル情報を共同でモデル化する。
SSMEは、スペクトルシグネチャ間の類似度測定によって得られた隣接行列を用いてスペクトル埋め込みを学習するだけでなく、ハイパースペクトルシーンにおける対象画素の空間近傍をモデル化する。
論文 参考訳(メタデータ) (2020-07-17T05:40:27Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z) - Hyperspectral Image Classification Based on Sparse Modeling of Spectral
Blocks [6.99674326582747]
ハイパースペクトル画像分類のためのスパースモデリングフレームワークを提案する。
提案手法により,高スペクトル画像の頑健なスパースモデルが実現され,分類精度が向上する。
論文 参考訳(メタデータ) (2020-05-17T08:18:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。