論文の概要: Spectral Response Function Guided Deep Optimization-driven Network for
Spectral Super-resolution
- arxiv url: http://arxiv.org/abs/2011.09701v2
- Date: Tue, 8 Dec 2020 13:38:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 21:46:25.056272
- Title: Spectral Response Function Guided Deep Optimization-driven Network for
Spectral Super-resolution
- Title(参考訳): スペクトル超解像のためのスペクトル応答関数誘導最適化ネットワーク
- Authors: Jiang He, Jie Li, Qiangqiang Yuan, Huanfeng Shen, and Liangpei Zhang
- Abstract要約: 本稿では、より深い空間スペクトルを持つ最適化駆動畳み込みニューラルネットワーク(CNN)を提案する。
自然およびリモートセンシング画像を含む2種類のデータセットに対する実験により,提案手法のスペクトル強調効果が示された。
- 参考スコア(独自算出の注目度): 20.014293172511074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral images are crucial for many research works. Spectral
super-resolution (SSR) is a method used to obtain high spatial resolution (HR)
hyperspectral images from HR multispectral images. Traditional SSR methods
include model-driven algorithms and deep learning. By unfolding a variational
method, this paper proposes an optimization-driven convolutional neural network
(CNN) with a deep spatial-spectral prior, resulting in physically interpretable
networks. Unlike the fully data-driven CNN, auxiliary spectral response
function (SRF) is utilized to guide CNNs to group the bands with spectral
relevance. In addition, the channel attention module (CAM) and reformulated
spectral angle mapper loss function are applied to achieve an effective
reconstruction model. Finally, experiments on two types of datasets, including
natural and remote sensing images, demonstrate the spectral enhancement effect
of the proposed method. And the classification results on the remote sensing
dataset also verified the validity of the information enhanced by the proposed
method.
- Abstract(参考訳): ハイパースペクトル画像は多くの研究に不可欠である。
スペクトル超解像(SSR)は、高空間分解能(HR)ハイパースペクトル画像を得るための手法である。
従来のSSR手法には、モデル駆動アルゴリズムとディープラーニングが含まれる。
変分法を展開させることにより,より深い空間スペクトルを持つ最適化駆動畳み込みニューラルネットワーク(CNN)を提案し,物理的に解釈可能なネットワークを実現する。
完全データ駆動のCNNとは異なり、補助スペクトル応答関数(SRF)はCNNを誘導してスペクトル関連性を持つバンドをグループ化する。
さらに、チャネルアテンションモジュール(CAM)と修正スペクトル角マッパー損失関数を適用し、効果的な再構成モデルを実現する。
最後に,自然センシング画像とリモートセンシング画像を含む2種類のデータセットについて実験を行い,提案手法のスペクトル拡張効果を示す。
また,リモートセンシングデータセットの分類結果から,提案手法により強化された情報の妥当性を検証した。
関連論文リスト
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - An Advanced Features Extraction Module for Remote Sensing Image Super-Resolution [0.5461938536945723]
チャネル・アンド・スペースアテンション特徴抽出(CSA-FE)と呼ばれる高度な特徴抽出モジュールを提案する。
提案手法は,高頻度情報を含む特定のチャネルや空間的位置に着目し,関連する特徴に焦点を合わせ,無関係な特徴を抑えるのに役立つ。
本モデルは,既存モデルと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2024-05-07T18:15:51Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
ほとんどの融合法は、融合アルゴリズム自体にのみ焦点をあて、分解モデルを見落としている。
我々は、LR-HSIとHR-MSIの劣化をモデル化するための物理インスパイアされた劣化モデル(PIDM)を提案する。
提案したPIDMは,既存の核融合法における核融合性能を向上させることができる。
論文 参考訳(メタデータ) (2024-02-04T09:07:28Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
光リモートセンシング画像(RSI)のためのSODは、光学RSIから視覚的に特徴的な物体や領域を探索・抽出することを目的としている。
光学RSIにおけるSODに並列なマルチスケールアテンションを持つリレーショナル推論ネットワークを提案する。
提案するRRNetは,既存の最先端SODコンペティタよりも質的,定量的に優れている。
論文 参考訳(メタデータ) (2021-10-27T07:18:32Z) - Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image
Super-resolution [9.022005574190182]
低分解能ハイパースペクトル像と高分解能マルチスペクトル像を融合させるトランスフォーマーに基づくネットワークを設計する。
LR-HSIは主スペクトル構造を持つため、ネットワークは空間的詳細推定に重点を置いている。
様々な実験と品質指標は、他の最先端手法と比較して、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2021-09-05T14:00:34Z) - Spatial-Spectral Feedback Network for Super-Resolution of Hyperspectral
Imagery [11.76638109321532]
ハイパースペクトル画像における高次元および複雑なスペクトルパターンは、バンド間の空間情報とスペクトル情報の同時探索を困難にする。
利用可能なハイパースペクトルトレーニングサンプルの数は極めて少なく、ディープニューラルネットワークのトレーニング時にオーバーフィットする可能性がある。
グローバルスペクトル帯域からの高レベル情報を持つ局所スペクトル帯域間の低レベル表現を洗練するための新しい空間スペクトルフィードバックネットワーク(ssfn)を提案する。
論文 参考訳(メタデータ) (2021-03-07T13:28:48Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
本稿では,高分解能ハイパースペクトル像と高分解能マルチスペクトル像を融合させる,深部畳み込みニューラルネットワークの簡易かつ効率的なアーキテクチャを提案する。
提案したネットワークアーキテクチャは,近年の最先端ハイパースペクトル画像の超解像化手法と比較して,最高の性能を達成している。
論文 参考訳(メタデータ) (2020-05-29T05:56:50Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。