Quantum system ascribed to the Oppenheimer-Snyder model of massive star
- URL: http://arxiv.org/abs/2307.02026v2
- Date: Wed, 29 Nov 2023 07:17:46 GMT
- Title: Quantum system ascribed to the Oppenheimer-Snyder model of massive star
- Authors: A. G\'o\'zd\'z, J. J. Ostrowski, A. P\c{e}drak, W. Piechocki
- Abstract summary: We quantize the Oppenheimer-Snyder model of black hole using the integral quantization method.
We treat spatial and temporal coordinates on the same footing both at classical and quantum levels.
As a byproduct, we obtain the resolution of the gravitational singularity of the Schwarzschild black hole at quantum level.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We quantize the Oppenheimer-Snyder model of black hole using the integral
quantization method. We treat spatial and temporal coordinates on the same
footing both at classical and quantum levels. Our quantization resolves or
smears the singularities of the classical curvature invariants. Quantum
trajectories with bounces can replace singular classical ones. The considered
quantum black hole may have finite bouncing time. As a byproduct, we obtain the
resolution of the gravitational singularity of the Schwarzschild black hole at
quantum level.
Related papers
- A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Signatures of discretization in quantum black hole spectra [0.0]
We analyze the effects produced by a black hole in a superposition of masses.
We infer signatures of discretization of the black hole mass in support of Bekenstein's conjecture.
arXiv Detail & Related papers (2023-04-02T01:10:19Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Schr\"odinger's Black Hole Cat [0.0]
We show how to describe such "spacetime superpositions" and explore effects they induce upon quantum matter.
Our approach capitalizes on standard tools of quantum field theory in curved space.
arXiv Detail & Related papers (2022-04-01T12:11:36Z) - Quantum Black hole--White hole entangled states [0.0]
We investigate the quantum deformation of the Wheeler--DeWitt equation of a Schwarzchild black hole.
We show that the event horizon area and the mass are quantized, degenerate, and bounded.
The degeneracy of states indicates entangled quantum black hole/white hole states.
arXiv Detail & Related papers (2022-03-18T14:02:52Z) - Bound on Quantum Fluctuations in Gravitational Waves from LIGO [0.0]
We derive some of the central equations governing quantum fluctuations in gravitational waves.
We make use of general relativity as a sensible effective quantum theory at large distances.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Quantum signatures of black hole mass superpositions [0.0]
We apply our approach to analyze the dynamics of a detector in a spacetime generated by a BTZ black hole in a superposition of masses.
We find that the detector exhibits signatures of quantum-gravitational effects corroborating Bekenstein's seminal conjecture concerning the quantized mass spectrum of black holes in quantum gravity.
arXiv Detail & Related papers (2021-11-26T05:20:25Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.