Anisotropic Inflation in Dipolar Bose-Einstein Condensates
- URL: http://arxiv.org/abs/2307.02141v2
- Date: Mon, 7 Aug 2023 18:03:18 GMT
- Title: Anisotropic Inflation in Dipolar Bose-Einstein Condensates
- Authors: Arun Rana, Abhijit Pendse, Sebastian W\"uster, and Sukanta Panda
- Abstract summary: Dipolar Bose-Einstein condensates (BECs) furnish a laboratory quantum simulation platform for the anisotropy evolution of fluctuation spectra during inflation.
We construct the anisotropic analogue space-time metric governing sound, by linking the time-varying strength of dipolar and contact interactions in the BEC to the scale factors in different coordinate directions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early during the era of cosmic inflation, rotational invariance may have been
broken, only later emerging as a feature of low-energy physics. This motivates
ongoing searches for residual signatures of anisotropic space-time, for example
in the power spectrum of the cosmic microwave background. We propose that
dipolar Bose-Einstein condensates (BECs) furnish a laboratory quantum
simulation platform for the anisotropy evolution of fluctuation spectra during
inflation, exploiting the fact that the speed of dipolar condensate sound waves
depends on direction. We construct the anisotropic analogue space-time metric
governing sound, by linking the time-varying strength of dipolar and contact
interactions in the BEC to the scale factors in different coordinate
directions. Based on these, we calculate the dynamics of phonon power spectra
during an inflation that renders the initially anisotropic universe isotropic.
We find that the expansion speed provides an experimental handle to control and
study the degree of final residual anisotropy. Gravity analogues using dipolar
condensates can thus provide tuneable experiments for a field of cosmology that
was until now confined to a single experiment, our universe.
Related papers
- Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - The fate of the false vacuum: Finite temperature, entropy and
topological phase in quantum simulations of the early universe [0.0]
A table-top quantum simulator in the form of an engineered Bose-Einstein condensate (BEC) has been proposed to give dynamical solutions of the quantum field equations.
We give a numerical feasibility study of the BEC quantum simulator under realistic conditions and temperatures, with an approximate truncated Wigner (tW) phase-space method.
We report the observation of false vacuum tunneling in these simulations, and the formation of multiple bubble 'universes' with distinct topological properties.
arXiv Detail & Related papers (2020-10-16T23:30:01Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Dynamical Zeeman resonance in spin-orbit-coupled spin-1 Bose gases [5.624813092014403]
The Bose-Einstein condensate is assumed to be in some superposed state of Zeeman sublevels and subject to a sudden shift of the trapping potential.
It is shown that the time-averaged center-of-mass oscillation and the spin polarizations of the Bose-Einstein condensate exhibit remarkable resonant peaks when the Zeeman fields are tuned to certain strengths.
arXiv Detail & Related papers (2020-07-28T11:23:39Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Parametrically excited star-shaped patterns at the interface of binary
Bose-Einstein condensates [0.0]
A Faraday-wave-like parametric instability is investigated via mean-field and Floquet analysis.
A heteronuclear system composed of $87$Rb-$85$Rb atoms can be used for the experimental realization of the phenomenon.
arXiv Detail & Related papers (2020-05-01T10:20:51Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.