論文の概要: Dual Arbitrary Scale Super-Resolution for Multi-Contrast MRI
- arxiv url: http://arxiv.org/abs/2307.02334v3
- Date: Mon, 10 Jul 2023 13:25:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 10:20:29.759439
- Title: Dual Arbitrary Scale Super-Resolution for Multi-Contrast MRI
- Title(参考訳): マルチコントラストMRIにおけるDual Arbitrary Scale Super-Resolution
- Authors: Jiamiao Zhang, Yichen Chi, Jun Lyu, Wenming Yang, Yapeng Tian
- Abstract要約: マルチコントラスト超解像 (SR) 再構成により, SR画像の高画質化が期待できる。
放射線技師は、固定スケールではなく任意のスケールでMR画像を拡大することに慣れている。
本稿では,Dual-ArbNetと呼ばれる,暗黙的ニューラル表現に基づくマルチコントラストMRI超解像法を提案する。
- 参考スコア(独自算出の注目度): 23.50915512118989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Limited by imaging systems, the reconstruction of Magnetic Resonance Imaging
(MRI) images from partial measurement is essential to medical imaging research.
Benefiting from the diverse and complementary information of multi-contrast MR
images in different imaging modalities, multi-contrast Super-Resolution (SR)
reconstruction is promising to yield SR images with higher quality. In the
medical scenario, to fully visualize the lesion, radiologists are accustomed to
zooming the MR images at arbitrary scales rather than using a fixed scale, as
used by most MRI SR methods. In addition, existing multi-contrast MRI SR
methods often require a fixed resolution for the reference image, which makes
acquiring reference images difficult and imposes limitations on arbitrary scale
SR tasks. To address these issues, we proposed an implicit neural
representations based dual-arbitrary multi-contrast MRI super-resolution
method, called Dual-ArbNet. First, we decouple the resolution of the target and
reference images by a feature encoder, enabling the network to input target and
reference images at arbitrary scales. Then, an implicit fusion decoder fuses
the multi-contrast features and uses an Implicit Decoding Function~(IDF) to
obtain the final MRI SR results. Furthermore, we introduce a curriculum
learning strategy to train our network, which improves the generalization and
performance of our Dual-ArbNet. Extensive experiments in two public MRI
datasets demonstrate that our method outperforms state-of-the-art approaches
under different scale factors and has great potential in clinical practice.
- Abstract(参考訳): イメージングシステムによって制限された部分的計測からMRI画像の再構成は、医療画像研究に不可欠である。
異なる撮像モードのマルチコントラストmr画像の多様かつ相補的な情報から、マルチコントラストスーパーレゾリューション(sr)再構成は高品質のsr画像が得られると期待されている。
医学的シナリオでは、多くのMRI SR法で用いられるように、病変を完全に可視化するために、放射線医は固定スケールではなく任意のスケールでMRI画像を拡大することに慣れている。
さらに、既存のマルチコントラストMRI SR法では、参照画像の固定解像度を必要とすることが多く、参照画像の取得が困難になり、任意のスケールの SR タスクに制限が課される。
これらの問題に対処するため,我々はDual-ArbNetと呼ばれる2軸マルチコントラストMRI超解像法を提案する。
まず,対象画像と参照画像の解像度を特徴エンコーダで分離し,ネットワークが任意のスケールで対象画像と参照画像を入力できるようにする。
そして、暗黙の融合復号器がマルチコントラスト特徴を融合し、インプリシット復号関数~(IDF)を用いて最終的なMRI SR結果を得る。
さらに,我々のネットワークをトレーニングするためのカリキュラム学習戦略を導入し,dual-arbnetの一般化と性能を向上させる。
2つの公開MRIデータセットにおける広範囲な実験により、我々の手法は異なるスケール要因下で最先端のアプローチよりも優れており、臨床実践において大きな可能性を秘めていることが示された。
関連論文リスト
- Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
マルチモーダル脳磁気共鳴(MR)イメージングは神経科学や神経学において不可欠である。
現在のMR画像合成アプローチは、通常、特定のタスクのための独立したデータセットで訓練される。
テキスト誘導ユニバーサルMR画像合成モデルであるTUMSynについて述べる。
論文 参考訳(メタデータ) (2024-09-25T11:14:47Z) - Compound Attention and Neighbor Matching Network for Multi-contrast MRI
Super-resolution [7.197850827700436]
MRIのマルチコントラスト超解像は、シングルイメージ超解像よりも優れた結果が得られる。
マルチコントラストMRI SRのための合成アテンションと近接マッチング(CANM-Net)を備えた新しいネットワークアーキテクチャを提案する。
CANM-Netは、ふりかえりと将来の実験において最先端のアプローチより優れている。
論文 参考訳(メタデータ) (2023-07-05T09:44:02Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Flexible Alignment Super-Resolution Network for Multi-Contrast MRI [7.727046305845654]
超解像は、より正確な医療分析のために低解像度の画像を前処理する上で重要な役割を担っている。
マルチコントラスト磁気共鳴画像のためのフレキシブルアライメント・スーパーリゾリューション・ネットワーク(FASR-Net)を提案する。
論文 参考訳(メタデータ) (2022-10-07T11:07:20Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
マルチコントラスト・スーパーレゾリューション (SR) 再構成により, SR画像の高画質化が期待できる。
既存の手法では、これらの特徴をマッチングし、融合させる効果的なメカニズムが欠如している。
そこで本稿では,トランスフォーマーを利用したマルチスケールコンテキストマッチングとアグリゲーション技術を開発することで,これらの問題を解決する新しいネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-26T01:42:59Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - High-Resolution Pelvic MRI Reconstruction Using a Generative Adversarial
Network with Attention and Cyclic Loss [3.4358954898228604]
超解像法はMRIの高速化に優れた性能を示した。
場合によっては、スキャン時間が長い場合でも高解像度画像を得るのは困難である。
我々は,周期的損失と注意機構を有するGAN(Generative Adversarial Network)を用いた新しい超解像法を提案した。
論文 参考訳(メタデータ) (2021-07-21T10:07:22Z) - MIASSR: An Approach for Medical Image Arbitrary Scale Super-Resolution [3.0554209431226624]
単一画像超解像は、1つの低解像度画像から高解像度の出力を得る。
深層学習に基づくSISRアプローチは、医用画像処理において広く議論されている。
医用画像任意スケール超解像(MIASSR)へのアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-22T14:24:25Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。