論文の概要: Loss Functions and Metrics in Deep Learning
- arxiv url: http://arxiv.org/abs/2307.02694v4
- Date: Sat, 12 Oct 2024 14:06:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:05:35.306767
- Title: Loss Functions and Metrics in Deep Learning
- Title(参考訳): ディープラーニングにおける損失関数とメトリクス
- Authors: Juan Terven, Diana M. Cordova-Esparza, Alfonso Ramirez-Pedraza, Edgar A. Chavez-Urbiola, Julio A. Romero-Gonzalez,
- Abstract要約: 我々は、多くの異なるタイプのディープラーニングタスクで使用される最も一般的な損失関数とメトリクスの包括的概要を提供する。
本稿では,各損失とメトリクスの式を導入し,その強度と限界について考察し,これらの手法がディープラーニングの様々な問題に適用できる方法について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: When training or evaluating deep learning models, two essential parts are picking the proper loss function and deciding on performance metrics. In this paper, we provide a comprehensive overview of the most common loss functions and metrics used across many different types of deep learning tasks, from general tasks such as regression and classification to more specific tasks in Computer Vision and Natural Language Processing. We introduce the formula for each loss and metric, discuss their strengths and limitations, and describe how these methods can be applied to various problems within deep learning. This work can serve as a reference for researchers and practitioners in the field, helping them make informed decisions when selecting the most appropriate loss function and performance metrics for their deep learning projects.
- Abstract(参考訳): ディープラーニングモデルのトレーニングや評価では、適切な損失関数を選択し、パフォーマンスメトリクスを決定することが2つの重要な部分です。
本稿では、回帰や分類といった一般的なタスクから、コンピュータビジョンや自然言語処理におけるより具体的なタスクまで、様々な種類のディープラーニングタスクにまたがる最も一般的な損失関数とメトリクスについて概観する。
本稿では,各損失とメトリクスの式を導入し,その強度と限界について考察し,これらの手法がディープラーニングの様々な問題に適用できる方法について述べる。
この研究は、この分野の研究者や実践者の参照として機能し、ディープラーニングプロジェクトで最も適切な損失関数とパフォーマンスメトリクスを選択する際に、情報的な決定を下すのに役立つ。
関連論文リスト
- RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Webスケールコーパスでトレーニングされた大規模な言語モデルは、望ましくないデータポイントを記憶することができる。
訓練されたモデルからこれらのデータポイントを「消去」することを目的とした、多くの機械学習手法が提案されている。
以下に示す次元に基づいて,機械学習のためのRESTORフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-31T20:54:35Z) - Fast and Efficient Local Search for Genetic Programming Based Loss
Function Learning [12.581217671500887]
本稿では,タスクとモデルに依存しない損失関数学習のためのメタラーニングフレームワークを提案する。
その結果, 学習した損失関数は, 収束性, サンプル効率, グラフ化, コンピュータビジョン, 自然言語処理問題に対する推論性能の向上をもたらすことがわかった。
論文 参考訳(メタデータ) (2024-03-01T02:20:04Z) - Generalization Performance of Transfer Learning: Overparameterized and
Underparameterized Regimes [61.22448274621503]
現実世界のアプリケーションでは、タスクは部分的な類似性を示し、あるアスペクトは似ているが、他のアスペクトは異なるか無関係である。
本研究は,パラメータ伝達の2つの選択肢を包含して,多種多様な移動学習について検討する。
一般化性能を向上させるために,共通部分とタスク特化部分の特徴数を決定するための実践的ガイドラインを提供する。
論文 参考訳(メタデータ) (2023-06-08T03:08:40Z) - A survey and taxonomy of loss functions in machine learning [60.41650195728953]
ほとんどの最先端の機械学習技術は、損失関数の最適化を中心に進化している。
この調査は、初心者と高度な機械学習実践者の両方にとって最も重要な損失関数の参照を提供することを目的としている。
論文 参考訳(メタデータ) (2023-01-13T14:38:24Z) - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning [50.59295648948287]
数ショットの学習シナリオでは、新しい目に見えない例を一般化し、うまく実行するのが課題だ。
各タスクに適応する損失関数を備えた新しいメタ学習フレームワークを導入する。
提案フレームワークはMeta-Learning with Task-Adaptive Loss Function (MeTAL) と名付けられ,様々な領域における有効性と柔軟性を示す。
論文 参考訳(メタデータ) (2021-10-08T06:07:21Z) - AutoLoss-Zero: Searching Loss Functions from Scratch for Generic Tasks [78.27036391638802]
AutoLoss-Zeroは、ジェネリックタスクのスクラッチから損失関数を検索する最初のフレームワークである。
探索効率を向上させるために、損失低減プロトコルと勾配等価性チェック戦略を開発する。
様々なコンピュータビジョンタスクにおける実験により、検索損失関数は既存の損失関数と同等かそれ以上かが示されている。
論文 参考訳(メタデータ) (2021-03-25T17:59:09Z) - Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation [56.343646789922545]
そこで本研究では,各計量に対する相異なるサロゲート損失を探索することにより,計量固有損失関数の設計を自動化することを提案する。
PASCAL VOCとCityscapesの実験では、探索されたサロゲート損失は手動で設計した損失関数よりも優れていた。
論文 参考訳(メタデータ) (2020-10-15T17:59:08Z) - An analysis on the use of autoencoders for representation learning:
fundamentals, learning task case studies, explainability and challenges [11.329636084818778]
多くの機械学習タスクでは、データの優れた表現を学ぶことが、優れたパフォーマンスのソリューションを構築するための鍵となる。
可視化のためのデータ埋め込み,画像認識,セマンティックハッシュ,異常行動の検出,インスタンス生成など,一連の学習課題を提示する。
オートエンコーダを唯一の学習方法として用いた各タスクに対して,解を提案する。
論文 参考訳(メタデータ) (2020-05-21T08:41:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。