Active Pointly-Supervised Instance Segmentation
- URL: http://arxiv.org/abs/2207.11493v1
- Date: Sat, 23 Jul 2022 11:25:24 GMT
- Title: Active Pointly-Supervised Instance Segmentation
- Authors: Chufeng Tang, Lingxi Xie, Gang Zhang, Xiaopeng Zhang, Qi Tian, Xiaolin
Hu
- Abstract summary: We present an economic active learning setting, named active pointly-supervised instance segmentation (APIS)
APIS starts with box-level annotations and iteratively samples a point within the box and asks if it falls on the object.
The model developed with these strategies yields consistent performance gain on the challenging MS-COCO dataset.
- Score: 106.38955769817747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The requirement of expensive annotations is a major burden for training a
well-performed instance segmentation model. In this paper, we present an
economic active learning setting, named active pointly-supervised instance
segmentation (APIS), which starts with box-level annotations and iteratively
samples a point within the box and asks if it falls on the object. The key of
APIS is to find the most desirable points to maximize the segmentation accuracy
with limited annotation budgets. We formulate this setting and propose several
uncertainty-based sampling strategies. The model developed with these
strategies yields consistent performance gain on the challenging MS-COCO
dataset, compared against other learning strategies. The results suggest that
APIS, integrating the advantages of active learning and point-based
supervision, is an effective learning paradigm for label-efficient instance
segmentation.
Related papers
- Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy with Sparse Point Annotation [1.124958340749622]
We introduce a multitask learning framework to leverage correlations among the counting, detection, and segmentation tasks.
We develop a cross-position cut-and-paste for label augmentation and an entropy-based pseudo-label selection.
The proposed model is capable of significantly outperforming UDA methods and produces comparable performance as the supervised counterpart.
arXiv Detail & Related papers (2024-03-31T12:22:23Z) - Annotation-Efficient Polyp Segmentation via Active Learning [45.59503015577479]
We propose a deep active learning framework for annotation-efficient polyp segmentation.
In practice, we measure the uncertainty of each sample by examining the similarity between features masked by the prediction map of the polyp and the background area.
We show that our proposed method achieved state-of-the-art performance compared to other competitors on both a public dataset and a large-scale in-house dataset.
arXiv Detail & Related papers (2024-03-21T12:25:17Z) - SUPClust: Active Learning at the Boundaries [23.573986817769025]
We propose a novel active learning method called SUPClust that seeks to identify points at the decision boundary between classes.
We demonstrate experimentally that labeling these points leads to strong model performance.
arXiv Detail & Related papers (2024-03-06T14:30:09Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Semantic-aware SAM for Point-Prompted Instance Segmentation [29.286913777078116]
In this paper, we introduce a cost-effective category-specific segmenter using Segment Anything (SAM)
To tackle this challenge, we have devised a Semantic-Aware Instance Network (SAPNet) that integrates Multiple Instance Learning (MIL) with matching capability and SAM with point prompts.
SAPNet strategically selects the most representative mask proposals generated by SAM to supervise segmentation, with a specific focus on object category information.
arXiv Detail & Related papers (2023-12-26T05:56:44Z) - Proposal-Based Multiple Instance Learning for Weakly-Supervised Temporal
Action Localization [98.66318678030491]
Weakly-supervised temporal action localization aims to localize and recognize actions in untrimmed videos with only video-level category labels during training.
We propose a novel Proposal-based Multiple Instance Learning (P-MIL) framework that directly classifies the candidate proposals in both the training and testing stages.
arXiv Detail & Related papers (2023-05-29T02:48:04Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions [25.408505612498423]
We propose a novel and principled semi-supervised active learning framework for instance segmentation.
Specifically, we present an uncertainty sampling strategy named Triplet Scoring Predictions (TSP) to explicitly incorporate samples ranking clues from classes, bounding boxes and masks.
Results on medical images datasets demonstrate that the proposed method results in the embodiment of knowledge from available data in a meaningful way.
arXiv Detail & Related papers (2020-12-09T02:36:52Z) - The Devil is in Classification: A Simple Framework for Long-tail Object
Detection and Instance Segmentation [93.17367076148348]
We investigate performance drop of the state-of-the-art two-stage instance segmentation model Mask R-CNN on the recent long-tail LVIS dataset.
We unveil that a major cause is the inaccurate classification of object proposals.
We propose a simple calibration framework to more effectively alleviate classification head bias with a bi-level class balanced sampling approach.
arXiv Detail & Related papers (2020-07-23T12:49:07Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.