When No-Rejection Learning is Consistent for Regression with Rejection
- URL: http://arxiv.org/abs/2307.02932v4
- Date: Sun, 21 Apr 2024 07:55:27 GMT
- Title: When No-Rejection Learning is Consistent for Regression with Rejection
- Authors: Xiaocheng Li, Shang Liu, Chunlin Sun, Hanzhao Wang,
- Abstract summary: We study a no-reject learning strategy that uses all the data to learn the prediction.
This paper investigates a no-reject learning strategy that uses all the data to learn the prediction.
- Score: 11.244583592648443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning with rejection has been a prototypical model for studying the human-AI interaction on prediction tasks. Upon the arrival of a sample instance, the model first uses a rejector to decide whether to accept and use the AI predictor to make a prediction or reject and defer the sample to humans. Learning such a model changes the structure of the original loss function and often results in undesirable non-convexity and inconsistency issues. For the classification with rejection problem, several works develop consistent surrogate losses for the joint learning of the predictor and the rejector, while there have been fewer works for the regression counterpart. This paper studies the regression with rejection (RwR) problem and investigates a no-rejection learning strategy that uses all the data to learn the predictor. We first establish the consistency for such a strategy under the weak realizability condition. Then for the case without the weak realizability, we show that the excessive risk can also be upper bounded with the sum of two parts: prediction error and calibration error. Lastly, we demonstrate the advantage of such a proposed learning strategy with empirical evidence.
Related papers
- The Surprising Harmfulness of Benign Overfitting for Adversarial
Robustness [13.120373493503772]
We prove a surprising result that even if the ground truth itself is robust to adversarial examples, the benignly overfitted model is benign in terms of the standard'' out-of-sample risk objective.
Our finding provides theoretical insights into the puzzling phenomenon observed in practice, where the true target function (e.g., human) is robust against adverasrial attack, while beginly overfitted neural networks lead to models that are not robust.
arXiv Detail & Related papers (2024-01-19T15:40:46Z) - Regression with Cost-based Rejection [30.43900105405108]
We investigate a novel regression problem where the model can reject to make predictions on some examples given certain rejection costs.
We derive the Bayes optimal solution, which shows that the optimal model should reject to make predictions on the examples whose variance is larger than the rejection cost.
arXiv Detail & Related papers (2023-11-08T09:33:21Z) - A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
We propose a technique named data-dependent contraction to capture how modified losses handle different classes.
On top of this technique, a fine-grained generalization bound is established for imbalanced learning, which helps reveal the mystery of re-weighting and logit-adjustment.
arXiv Detail & Related papers (2023-10-07T09:15:08Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Benign-Overfitting in Conditional Average Treatment Effect Prediction
with Linear Regression [14.493176427999028]
We study the benign overfitting theory in the prediction of the conditional average treatment effect (CATE) with linear regression models.
We show that the T-learner fails to achieve the consistency except the random assignment, while the IPW-learner converges the risk to zero if the propensity score is known.
arXiv Detail & Related papers (2022-02-10T18:51:52Z) - Strategic Instrumental Variable Regression: Recovering Causal
Relationships From Strategic Responses [16.874125120501944]
We show that we can use strategic responses effectively to recover causal relationships between the observable features and outcomes we wish to predict.
Our work establishes a novel connection between strategic responses to machine learning models and instrumental variable (IV) regression.
arXiv Detail & Related papers (2021-07-12T22:12:56Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
We investigate the transferability of adversarial examples for text classification models.
We propose a genetic algorithm to find an ensemble of models that can induce adversarial examples to fool almost all existing models.
We derive word replacement rules that can be used for model diagnostics from these adversarial examples.
arXiv Detail & Related papers (2020-11-17T10:45:05Z) - A Contraction Approach to Model-based Reinforcement Learning [11.701145942745274]
We analyze the error in the cumulative reward using a contraction approach.
We prove that branched rollouts can reduce this error.
In this case, we show that GAN-type learning has an advantage over Behavioral Cloning when its discriminator is well-trained.
arXiv Detail & Related papers (2020-09-18T02:03:14Z) - Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial
Perturbations [65.05561023880351]
Adversarial examples are malicious inputs crafted to induce misclassification.
This paper studies a complementary failure mode, invariance-based adversarial examples.
We show that defenses against sensitivity-based attacks actively harm a model's accuracy on invariance-based attacks.
arXiv Detail & Related papers (2020-02-11T18:50:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.