Parameter-Efficient Fine-Tuning of LLaMA for the Clinical Domain
- URL: http://arxiv.org/abs/2307.03042v3
- Date: Sun, 9 Jun 2024 17:00:36 GMT
- Title: Parameter-Efficient Fine-Tuning of LLaMA for the Clinical Domain
- Authors: Aryo Pradipta Gema, Pasquale Minervini, Luke Daines, Tom Hope, Beatrice Alex,
- Abstract summary: Adapting pretrained language models to novel domains, such as clinical applications, traditionally involves retraining their entire set of parameters.
We propose a two-step PEFT framework and evaluate it in the clinical domain.
- Score: 13.912870728383396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adapting pretrained language models to novel domains, such as clinical applications, traditionally involves retraining their entire set of parameters. Parameter-Efficient Fine-Tuning (PEFT) techniques for fine-tuning language models significantly reduce computational requirements by selectively fine-tuning small subsets of parameters. In this study, we propose a two-step PEFT framework and evaluate it in the clinical domain. Our approach combines a specialised PEFT adapter layer designed for clinical domain adaptation with another adapter specialised for downstream tasks. We evaluate the framework on multiple clinical outcome prediction datasets, comparing it to clinically trained language models. Our framework achieves a better AUROC score averaged across all clinical downstream tasks compared to clinical language models. In particular, we observe large improvements of 4-5% AUROC in large-scale multilabel classification tasks, such as diagnoses and procedures classification. To our knowledge, this study is the first to provide an extensive empirical analysis of the interplay between PEFT techniques and domain adaptation in an important real-world domain of clinical applications.
Related papers
- Harmonising the Clinical Melody: Tuning Large Language Models for Hospital Course Summarisation in Clinical Coding [5.279406017862076]
The challenge of summarising a hospital course remains an open area for further research and development.
We adapted three pre trained LLMs, Llama 3, BioMistral, Mistral Instruct v0.1 for the hospital course summarisation task.
The fine tuned models were evaluated using BERTScore and ROUGE metrics to assess the effectiveness of clinical domain fine tuning.
arXiv Detail & Related papers (2024-09-23T00:35:23Z) - Fine Tuning Large Language Models for Medicine: The Role and Importance of Direct Preference Optimization [2.096816583842973]
Two of the most common methods of fine tuning are Supervised Fine Tuning (SFT) and Direct Preference Optimization (DPO)
We compare the performance of SFT and DPO for five common natural language tasks in medicine.
We find that SFT alone is sufficient for Classification with text data, whereas DPO improves performance for the more complex tasks of Clinical Reasoning, Summarization and Clinical Triage.
arXiv Detail & Related papers (2024-09-19T13:03:24Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
We build a benchmark ClinicBench to better understand large language models (LLMs) in the clinic.
We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks.
We then construct six novel datasets and clinical tasks that are complex but common in real-world practice.
We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings.
arXiv Detail & Related papers (2024-04-25T15:51:06Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - ClinicalGPT: Large Language Models Finetuned with Diverse Medical Data
and Comprehensive Evaluation [5.690250818139763]
Large language models have exhibited exceptional performance on various Natural Language Processing (NLP) tasks.
Despite these advances, their effectiveness in medical applications is limited, due to challenges such as factual inaccuracies, reasoning abilities, and lack grounding in real-world experience.
We present ClinicalGPT, a language model explicitly designed and optimized for clinical scenarios.
arXiv Detail & Related papers (2023-06-16T16:56:32Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Do We Still Need Clinical Language Models? [15.023633270864675]
We show that relatively small specialized clinical models substantially outperform all in-context learning approaches.
We release the code and the models used under the PhysioNet Credentialed Health Data license and data use agreement.
arXiv Detail & Related papers (2023-02-16T05:08:34Z) - A Multimodal Transformer: Fusing Clinical Notes with Structured EHR Data
for Interpretable In-Hospital Mortality Prediction [8.625186194860696]
We provide a novel multimodal transformer to fuse clinical notes and structured EHR data for better prediction of in-hospital mortality.
To improve interpretability, we propose an integrated gradients (IG) method to select important words in clinical notes.
We also investigate the significance of domain adaptive pretraining and task adaptive fine-tuning on the Clinical BERT.
arXiv Detail & Related papers (2022-08-09T03:49:52Z) - Cross-Lingual Knowledge Transfer for Clinical Phenotyping [55.92262310716537]
We investigate cross-lingual knowledge transfer strategies to execute this task for clinics that do not use the English language.
We evaluate these strategies for a Greek and a Spanish clinic leveraging clinical notes from different clinical domains.
Our results show that using multilingual data overall improves clinical phenotyping models and can compensate for data sparseness.
arXiv Detail & Related papers (2022-08-03T08:33:21Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.