Large Language Models in the Clinic: A Comprehensive Benchmark
- URL: http://arxiv.org/abs/2405.00716v4
- Date: Wed, 16 Oct 2024 09:18:58 GMT
- Title: Large Language Models in the Clinic: A Comprehensive Benchmark
- Authors: Fenglin Liu, Zheng Li, Hongjian Zhou, Qingyu Yin, Jingfeng Yang, Xianfeng Tang, Chen Luo, Ming Zeng, Haoming Jiang, Yifan Gao, Priyanka Nigam, Sreyashi Nag, Bing Yin, Yining Hua, Xuan Zhou, Omid Rohanian, Anshul Thakur, Lei Clifton, David A. Clifton,
- Abstract summary: We build a benchmark ClinicBench to better understand large language models (LLMs) in the clinic.
We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks.
We then construct six novel datasets and clinical tasks that are complex but common in real-world practice.
We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings.
- Score: 63.21278434331952
- License:
- Abstract: The adoption of large language models (LLMs) to assist clinicians has attracted remarkable attention. Existing works mainly adopt the close-ended question-answering (QA) task with answer options for evaluation. However, many clinical decisions involve answering open-ended questions without pre-set options. To better understand LLMs in the clinic, we construct a benchmark ClinicBench. We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks. Furthermore, we construct six novel datasets and clinical tasks that are complex but common in real-world practice, e.g., open-ended decision-making, long document processing, and emerging drug analysis. We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings. Finally, we invite medical experts to evaluate the clinical usefulness of LLMs. The benchmark data is available at https://github.com/AI-in-Health/ClinicBench.
Related papers
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - CliBench: A Multifaceted and Multigranular Evaluation of Large Language Models for Clinical Decision Making [16.310913127940857]
We introduce CliBench, a novel benchmark developed from the MIMIC IV dataset.
This benchmark offers a comprehensive and realistic assessment of LLMs' capabilities in clinical diagnosis.
We conduct a zero-shot evaluation of leading LLMs to assess their proficiency in clinical decision-making.
arXiv Detail & Related papers (2024-06-14T11:10:17Z) - AgentClinic: a multimodal agent benchmark to evaluate AI in simulated clinical environments [2.567146936147657]
We introduce AgentClinic, a multimodal agent benchmark for evaluating large language models (LLM) in simulated clinical environments.
We find that solving MedQA problems in the sequential decision-making format of AgentClinic is considerably more challenging, resulting in diagnostic accuracies that can drop to below a tenth of the original accuracy.
arXiv Detail & Related papers (2024-05-13T17:38:53Z) - Benchmarking Large Language Models on Answering and Explaining Challenging Medical Questions [19.436999992810797]
We construct two new datasets: JAMA Clinical Challenge and Medbullets.
JAMA Clinical Challenge consists of questions based on challenging clinical cases, while Medbullets comprises simulated clinical questions.
We evaluate seven LLMs on the two datasets using various prompts.
arXiv Detail & Related papers (2024-02-28T05:44:41Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - LongHealth: A Question Answering Benchmark with Long Clinical Documents [36.05587855811346]
We present the LongHealth benchmark, comprising 20 detailed fictional patient cases across various diseases.
The benchmark challenges LLMs with 400 multiple-choice questions in three categories: information extraction, negation, and sorting.
We evaluated nine open-source LLMs with a minimum of 16,000 tokens and also included OpenAI's proprietary and cost-efficient GPT-3.5 Turbo for comparison.
arXiv Detail & Related papers (2024-01-25T19:57:00Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
Large language models (LLMs) have shown promise in natural language processing (NLP), but their effectiveness on a diverse range of clinical summarization tasks remains unproven.
In this study, we apply adaptation methods to eight LLMs, spanning four distinct clinical summarization tasks.
A clinical reader study with ten physicians evaluates summary, completeness, correctness, and conciseness; in a majority of cases, summaries from our best adapted LLMs are either equivalent (45%) or superior (36%) compared to summaries from medical experts.
arXiv Detail & Related papers (2023-09-14T05:15:01Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridge is a visual analytics tool that seamlessly incorporates machine learning explanations into clinicians' decision-making workflow.
We identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence.
We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians.
arXiv Detail & Related papers (2021-08-04T17:34:13Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
We construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches.
We propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-12-04T06:09:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.