論文の概要: Can Domain Adaptation Improve Accuracy and Fairness of Skin Lesion
Classification?
- arxiv url: http://arxiv.org/abs/2307.03157v1
- Date: Thu, 6 Jul 2023 17:32:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 13:08:11.932399
- Title: Can Domain Adaptation Improve Accuracy and Fairness of Skin Lesion
Classification?
- Title(参考訳): ドメイン適応は皮膚病変分類の精度と公平性を改善するか?
- Authors: Janet Wang, Yunbei Zhang, Zhengming Ding, Jihun Hamm
- Abstract要約: 各種非教師付き領域適応法(UDA)の2値・多値皮膚病変分類における適用可能性について検討した。
実験の結果,UDAは二分分類に有効であり,不均衡が緩和された場合にはさらなる改善が見られた。
本研究は,少数派に対する偏見を効果的に低減し,公平性を重視したテクニックを明示的に用いなくても公平性を促進できることを示した。
- 参考スコア(独自算出の注目度): 55.49029146917322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based diagnostic system has demonstrated potential in
classifying skin cancer conditions when labeled training example are abundant.
However, skin lesion analysis often suffers from a scarcity of labeled data,
hindering the development of an accurate and reliable diagnostic system. In
this work, we leverage multiple skin lesion datasets and investigate the
feasibility of various unsupervised domain adaptation (UDA) methods in binary
and multi-class skin lesion classification. In particular, we assess three UDA
training schemes: single-, combined-, and multi-source. Our experiment results
show that UDA is effective in binary classification, with further improvement
being observed when imbalance is mitigated. In multi-class task, its
performance is less prominent, and imbalance problem again needs to be
addressed to achieve above-baseline accuracy. Through our quantitative
analysis, we find that the test error of multi-class tasks is strongly
correlated with label shift, and feature-level UDA methods have limitations
when handling imbalanced datasets. Finally, our study reveals that UDA can
effectively reduce bias against minority groups and promote fairness, even
without the explicit use of fairness-focused techniques.
- Abstract(参考訳): 深層学習に基づく診断システムは、ラベル付きトレーニング例が豊富にある皮膚がんの病態を分類する可能性を示している。
しかし、皮膚の病変解析はしばしばラベル付きデータの不足に悩まされ、正確で信頼性の高い診断システムの開発を妨げる。
本研究は,複数の皮膚病変データセットを活用し,非教師なし領域適応法(UDA)の2値および多値の皮膚病変分類への応用について検討する。
特に,シングル,コンバインド,マルチソースの3つのudaトレーニングスキームを評価した。
実験の結果,UDAは二分分類に有効であり,不均衡が緩和された場合にはさらなる改善が見られた。
多クラスタスクでは、その性能はさほど目立たず、また、上記のベースライン精度を達成するために不均衡の問題に対処する必要がある。
定量的解析により,マルチクラスタスクのテストエラーはラベルシフトと強く相関し,機能レベルのudaメソッドには不均衡データセットを扱う際の制限があることが分かった。
最後に,本研究では,少数派に対する偏見を効果的に低減し,公平性を重視したテクニックを明示的に用いなくても公平性を促進できることを示した。
関連論文リスト
- Unveiling the Superior Paradigm: A Comparative Study of Source-Free Domain Adaptation and Unsupervised Domain Adaptation [52.36436121884317]
Source-Free Domain Adaptation (SFDA) は、現実のシナリオにおいて、Unsupervised Domain Adaptation (UDA) よりも一般的に優れていることを示す。
SFDAは、時間効率、ストレージ要件、対象とする学習目標、負の移動リスクの低減、過度な適合に対する堅牢性の向上といった利点を提供している。
利用可能なソースデータをマルチSFDA手法に効果的に統合する新しい重み推定法を提案する。
論文 参考訳(メタデータ) (2024-11-24T13:49:29Z) - UDA-Bench: Revisiting Common Assumptions in Unsupervised Domain Adaptation Using a Standardized Framework [59.428668614618914]
現代無監督領域適応法(UDA)の有効性に影響を及ぼす様々な要因について, より深く考察する。
分析を容易にするため,ドメイン適応のためのトレーニングと評価を標準化する新しいPyTorchフレームワークであるUDA-Benchを開発した。
論文 参考訳(メタデータ) (2024-09-23T17:57:07Z) - Unsupervised Domain Adaptation for Brain Vessel Segmentation through
Transwarp Contrastive Learning [46.248404274124546]
教師なし領域適応(Unsupervised domain adapt, UDA)は、ラベル付きソース分布とラベル付きターゲット分布との整合を目的とし、ドメイン不変な予測モデルを得る。
本稿では,ラベル付きソースと非ラベル付きターゲット分布の領域間ギャップを狭めるための,UDAのための簡易かつ強力なコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-23T10:01:22Z) - Multi-source-free Domain Adaptation via Uncertainty-aware Adaptive
Distillation [8.791916654073088]
ソースフリードメイン適応(SFDA)は、データプライバシの認識のためにデータにアクセスすることなく、ドメインから取得したデータ間のドメインの不一致を軽減する。
マルチソースフリーな非教師付きドメイン適応設定のための不確実性認識適応蒸留(UAD)を提案する。
論文 参考訳(メタデータ) (2024-02-09T06:48:04Z) - Calibrated Adaptive Teacher for Domain Adaptive Intelligent Fault
Diagnosis [7.88657961743755]
教師なしのドメイン適応(UDA)は、ラベル付きデータがソースドメインで利用可能であり、ラベルなしデータがターゲットドメインでのみ利用可能であるシナリオを扱う。
本稿では,自己学習過程を通じて教師ネットワークの予測を校正する,Calibrated Adaptive Teacher (CAT) と呼ばれる新しいUDA手法を提案する。
論文 参考訳(メタデータ) (2023-12-05T15:19:29Z) - Weighted Joint Maximum Mean Discrepancy Enabled
Multi-Source-Multi-Target Unsupervised Domain Adaptation Fault Diagnosis [15.56929064706769]
We propose a weighted joint maximum mean discrepancy able multi-source-multi-target unsupervised domain adaptation (WJMMD-MDA)。
提案手法は,複数のラベル付きソースドメインから十分な情報を抽出し,ソースドメインとターゲットドメイン間のドメインアライメントを実現する。
提案手法の性能を3つのデータセットの総合的な比較実験で評価した。
論文 参考訳(メタデータ) (2023-10-20T16:53:31Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
医用画像セグメンテーションのための2段階のソースフリードメイン適応(SFDA)フレームワークを提案する。
プロトタイプアンコールされた特徴アライメントの段階では,まず,事前学習した画素ワイド分類器の重みを原プロトタイプとして利用する。
そこで,本研究では,目標となる特徴とクラスプロトタイプとの整合性を期待するコストを最小化し,双方向輸送を導入する。
論文 参考訳(メタデータ) (2023-07-19T06:07:12Z) - UMAD: Universal Model Adaptation under Domain and Category Shift [138.12678159620248]
Universal Model Adaptation (UMAD)フレームワークは、ソースデータにアクセスせずに両方のUDAシナリオを処理する。
未知のサンプルと未知のサンプルを識別するのに役立つ情報整合性スコアを開発した。
オープンセットおよびオープンパーティルセット UDA シナリオの実験では、UMAD が最先端のデータ依存手法に匹敵する性能を示した。
論文 参考訳(メタデータ) (2021-12-16T01:22:59Z) - My Health Sensor, my Classifier: Adapting a Trained Classifier to
Unlabeled End-User Data [0.5091527753265949]
本研究では,ラベル付きソースデータが直接利用できないような制約を伴って,教師なしドメイン適応(DA)のアプローチを提案する。
我々のソリューションは、分類器の信念に基づいて、ターゲットデータ分布の信頼性の高いサブリージョンのみを反復的にラベル付けする。
本研究の目的は,患者のニーズに応じて睡眠時無呼吸を検知し,パーソナライズを実現するためのアプローチをDAに適用することである。
論文 参考訳(メタデータ) (2020-09-22T20:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。