論文の概要: Domain-invariant Clinical Representation Learning by Bridging Data Distribution Shift across EMR Datasets
- arxiv url: http://arxiv.org/abs/2310.07799v3
- Date: Tue, 11 Feb 2025 12:32:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:04:41.233919
- Title: Domain-invariant Clinical Representation Learning by Bridging Data Distribution Shift across EMR Datasets
- Title(参考訳): EMRデータセット間のデータ分散シフトのブリッジングによるドメイン不変な臨床表現学習
- Authors: Zhongji Zhang, Yuhang Wang, Yinghao Zhu, Xinyu Ma, Yasha Wang, Junyi Gao, Liantao Ma, Wen Tang, Xiaoyun Zhang, Ling Wang,
- Abstract要約: 効果的な予後モデルは、医師が正確な診断を行い、パーソナライズされた治療計画を設計するのを助けることができる。
限られたデータ収集、不十分な臨床経験、プライバシと倫理上の懸念は、データの可用性を制限します。
本稿では,ソースとターゲットデータセット間の遷移モデルを構築するドメイン不変表現学習手法を提案する。
- 参考スコア(独自算出の注目度): 28.59271580918754
- License:
- Abstract: Emerging diseases present challenges in symptom recognition and timely clinical intervention due to limited available information. An effective prognostic model could assist physicians in making accurate diagnoses and designing personalized treatment plans to prevent adverse outcomes. However, in the early stages of disease emergence, several factors hamper model development: limited data collection, insufficient clinical experience, and privacy and ethical concerns restrict data availability and complicate accurate label assignment. Furthermore, Electronic Medical Record (EMR) data from different diseases or sources often exhibit significant cross-dataset feature misalignment, severely impacting the effectiveness of deep learning models. We present a domain-invariant representation learning method that constructs a transition model between source and target datasets. By constraining the distribution shift of features generated across different domains, we capture domain-invariant features specifically relevant to downstream tasks, developing a unified domain-invariant encoder that achieves better feature representation across various task domains. Experimental results across multiple target tasks demonstrate that our proposed model surpasses competing baseline methods and achieves faster training convergence, particularly when working with limited data. Extensive experiments validate our method's effectiveness in providing more accurate predictions for emerging pandemics and other diseases. Code is publicly available at https://github.com/wang1yuhang/domain_invariant_network.
- Abstract(参考訳): 新興疾患は、症状の認識と限られた情報によるタイムリーな臨床介入に課題を呈する。
効果的な予後モデルは、医師が正確な診断を行い、有害な結果を防ぐためにパーソナライズされた治療計画を設計するのを助けることができる。
しかし、病気の発生の初期段階では、限られたデータ収集、不十分な臨床経験、プライバシと倫理的懸念といったいくつかの要因が、データの可用性を制限し、正確なラベル割り当てを複雑にする。
さらに、異なる疾患やソースからの電子医療記録(EMR)データは、しばしば重要なクロスデータセットの特徴的不一致を示し、深層学習モデルの有効性に深刻な影響を及ぼす。
本稿では,ソースとターゲットデータセット間の遷移モデルを構築するドメイン不変表現学習手法を提案する。
異なるドメイン間で生成された機能の分散シフトを制限することにより、ダウンストリームタスクに特有なドメイン不変機能をキャプチャし、さまざまなタスクドメインにまたがるより良い機能表現を実現する統一されたドメイン不変エンコーダを開発する。
複数の目標タスクにまたがる実験結果から,提案モデルが競合するベースライン手法を超越し,特に限られたデータを扱う場合,より高速なトレーニング収束を実現することが示された。
流行するパンデミックや他の病気に対して,より正確な予測を行う上での本手法の有効性を,広範囲にわたる実験により検証した。
コードはhttps://github.com/wang1yuhang/ domain_invariant_network.comで公開されている。
関連論文リスト
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
がん予後は、患者の予後と生存率を予測する重要なタスクである。
これまでの研究では、臨床ノート、医療画像、ゲノムデータなどの多様なデータモダリティを統合し、補完的な情報を活用している。
既存のアプローチには2つの大きな制限がある。まず、各病院の患者記録など、各種のトレーニングに新しく到着したデータを組み込むことに苦慮する。
第二に、ほとんどのマルチモーダル統合手法は単純化された結合やタスク固有のパイプラインに依存しており、モダリティ間の複雑な相互依存を捉えることができない。
論文 参考訳(メタデータ) (2025-01-30T06:49:57Z) - Few-shot Metric Domain Adaptation: Practical Learning Strategies for an Automated Plant Disease Diagnosis [2.7992435001846827]
FMDA(Few-shot Metric Domain Adaptation)は、実用的なシステムにおける診断精度を高めるための柔軟で効果的なアプローチである。
FMDAは、ソース(トレーニング)データの特徴空間とターゲットデータとの"距離"を最小限に抑える診断モデルに制約を導入することで、ドメインの相違を低減します。
大規模な実験では、FMDAはF1スコアを11.1点から29.3点に改善した。
論文 参考訳(メタデータ) (2024-12-25T10:01:30Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
知識分解」は、特定の医療課題のパフォーマンス向上を目的としている。
我々はLow-Rank Knowledge Decomposition(LoRKD)という新しいフレームワークを提案する。
LoRKDは、低ランクのエキスパートモジュールと効率的な知識分離畳み込みを組み込むことで、グラデーションを異なるタスクから明確に分離する。
論文 参考訳(メタデータ) (2024-09-29T03:56:21Z) - Amplifying Pathological Detection in EEG Signaling Pathways through
Cross-Dataset Transfer Learning [10.212217551908525]
実世界の病理分類課題におけるデータとモデルスケーリングとデータセット間の知識伝達の有効性について検討する。
ネガティブトランスファーの可能性の課題を特定し、いくつかの重要なコンポーネントの重要性を強調する。
以上の結果から,小規模で汎用的なモデル(ShallowNetなど)は単一データセット上では良好に動作するが,大規模なモデル(TCNなど)では,大規模かつ多様なデータセットからの転送や学習がより優れていることが示唆された。
論文 参考訳(メタデータ) (2023-09-19T20:09:15Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
実世界のシナリオでは、トレーニング中に露出していない新しいドメインや異なるドメインのデータに遭遇することが一般的である。
ドメイン一般化(Domain Generalization, DG)は、モデルがこれまで見つからなかったドメインからのデータを扱うことを可能にする、有望な方向である。
本稿では,敵対的トレーニングを活用して無限のスタイルでトレーニングデータを生成する,AdverIN(Adversarial Intensity Attack)と呼ばれる新しいDG手法を提案する。
論文 参考訳(メタデータ) (2023-04-05T19:40:51Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - A Novel TSK Fuzzy System Incorporating Multi-view Collaborative Transfer
Learning for Personalized Epileptic EEG Detection [20.11589208667256]
マルチビュー協調移動学習を統合したTSKファジィシステムに基づくてんかん検出アルゴリズムを提案する。
提案手法はてんかん性脳波を効果的に検出する能力を有する。
論文 参考訳(メタデータ) (2021-11-11T12:15:55Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
本論文は,異なるモダリティから異なるパターンと共有パターンをカプセル化することにより,ドメイン間データから堅牢な表現を学習できる新しいモデルの実現を目的とする。
正常な臨床試験で得られたCTおよびMRI肝データに対する試験は、提案したモデルが他のすべてのベースラインを大きなマージンで上回っていることを示している。
論文 参考訳(メタデータ) (2020-06-08T07:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。