論文の概要: Quantification of Uncertainty with Adversarial Models
- arxiv url: http://arxiv.org/abs/2307.03217v2
- Date: Tue, 24 Oct 2023 16:37:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 00:13:51.534909
- Title: Quantification of Uncertainty with Adversarial Models
- Title(参考訳): 逆モデルによる不確かさの定量化
- Authors: Kajetan Schweighofer, Lukas Aichberger, Mykyta Ielanskyi, G\"unter
Klambauer, Sepp Hochreiter
- Abstract要約: 不確実性の定量化は、現実のアプリケーションにおいて実行可能な予測にとって重要である。
逆数モデル(QUAM)による不確かさの定量化を提案する。
QUAM は積分の下にある積全体が大きい領域を識別する。
- 参考スコア(独自算出の注目度): 6.772632213236167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantifying uncertainty is important for actionable predictions in real-world
applications. A crucial part of predictive uncertainty quantification is the
estimation of epistemic uncertainty, which is defined as an integral of the
product between a divergence function and the posterior. Current methods such
as Deep Ensembles or MC dropout underperform at estimating the epistemic
uncertainty, since they primarily consider the posterior when sampling models.
We suggest Quantification of Uncertainty with Adversarial Models (QUAM) to
better estimate the epistemic uncertainty. QUAM identifies regions where the
whole product under the integral is large, not just the posterior.
Consequently, QUAM has lower approximation error of the epistemic uncertainty
compared to previous methods. Models for which the product is large correspond
to adversarial models (not adversarial examples!). Adversarial models have both
a high posterior as well as a high divergence between their predictions and
that of a reference model. Our experiments show that QUAM excels in capturing
epistemic uncertainty for deep learning models and outperforms previous methods
on challenging tasks in the vision domain.
- Abstract(参考訳): 不確かさの定量化は実世界のアプリケーションで実行可能な予測に重要である。
予測的不確実性定量化の重要な部分は、発散関数と後部の間の積の積分として定義されるてんかん不確実性の推定である。
ディープアンサンブルやMCドロップアウトのような現在の手法は、主にサンプリングモデルにおいて後部を考慮しているため、てんかんの不確かさを推定するには不十分である。
疫学的な不確実性をよりよく推定するために, 適応モデルによる不確かさの定量化を提案する。
quamは、積分の下の全積が後側だけでなく大きい領域を特定する。
その結果、quamは従来の方法に比べて認識の不確かさの近似誤差が低い。
製品が大きいモデルは、(逆の例ではなく)逆のモデルに対応します。
敵対モデルは、高い後部と、それらの予測と参照モデルの高ばらつきの両方を持つ。
実験の結果, QUIMは, 深層学習モデルの認識不確実性を把握し, 視覚領域における課題に対する従来の手法よりも優れていることがわかった。
関連論文リスト
- Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials [0.0]
機械学習の原子間ポテンシャルの不確実性推定は、導入した追加モデルエラーの定量化に不可欠である。
我々は、クーロンおよびSOAP表現を持つGPRモデルを、ポテンシャルエネルギー表面と分子の励起エネルギーを予測する入力として考える。
我々は,GPRの分散とアンサンブルに基づく不確かさが誤差とどのように関係しているか,また,固定された構成空間から最も不確実なサンプルを選択することによりモデル性能が向上するかを評価する。
論文 参考訳(メタデータ) (2024-10-27T10:06:09Z) - Introducing an Improved Information-Theoretic Measure of Predictive
Uncertainty [6.3398383724486544]
予測の不確実性は、ベイズ平均(BMA)予測分布のエントロピーによってよく測定される。
これらの制限を克服するために理論的に根ざした尺度を導入する。
提案手法は, 制御された合成タスクにおいて, より合理的に振る舞う。
論文 参考訳(メタデータ) (2023-11-14T16:55:12Z) - Model-Based Uncertainty in Value Functions [89.31922008981735]
MDP上の分布によって引き起こされる値の分散を特徴付けることに重点を置いている。
従来の作業は、いわゆる不確実性ベルマン方程式を解くことで、値よりも後方の分散を境界にしている。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式を提案する。
論文 参考訳(メタデータ) (2023-02-24T09:18:27Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Uncertainty estimation under model misspecification in neural network
regression [3.2622301272834524]
モデル選択が不確実性評価に与える影響について検討する。
モデルミスセグメンテーションでは,アレータリック不確実性は適切に捉えられていない。
論文 参考訳(メタデータ) (2021-11-23T10:18:41Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Aleatoric uncertainty for Errors-in-Variables models in deep regression [0.48733623015338234]
Errors-in-Variablesの概念がベイズ的深部回帰においてどのように利用できるかを示す。
様々なシミュレートされた実例に沿ったアプローチについて論じる。
論文 参考訳(メタデータ) (2021-05-19T12:37:02Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。