論文の概要: Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
- arxiv url: http://arxiv.org/abs/2410.20398v1
- Date: Sun, 27 Oct 2024 10:06:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:22.898010
- Title: Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
- Title(参考訳): ガウス過程回帰に基づく機械学習の原子間ポテンシャルの不確実性評価
- Authors: Matthias Holzenkamp, Dongyu Lyu, Ulrich Kleinekathöfer, Peter Zaspel,
- Abstract要約: 機械学習の原子間ポテンシャルの不確実性推定は、導入した追加モデルエラーの定量化に不可欠である。
我々は、クーロンおよびSOAP表現を持つGPRモデルを、ポテンシャルエネルギー表面と分子の励起エネルギーを予測する入力として考える。
我々は,GPRの分散とアンサンブルに基づく不確かさが誤差とどのように関係しているか,また,固定された構成空間から最も不確実なサンプルを選択することによりモデル性能が向上するかを評価する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning interatomic potentials (MLIPs) have seen significant advances as efficient replacement of expensive quantum chemical calculations. Uncertainty estimations for MLIPs are crucial to quantify the additional model error they introduce and to leverage this information in active learning strategies. MLIPs that are based on Gaussian process regression provide a standard deviation as a possible uncertainty measure. An alternative approach are ensemble-based uncertainties. Although these uncertainty measures have been applied to active learning, it has rarely been studied how they correlate with the error, and it is not always clear whether active learning actually outperforms random sampling strategies. We consider GPR models with Coulomb and SOAP representations as inputs to predict potential energy surfaces and excitation energies of molecules. We evaluate, how the GPR variance and ensemble-based uncertainties relate to the error and whether model performance improves by selecting the most uncertain samples from a fixed configuration space. For the ensemble based uncertainty estimations, we find that they often do not provide any information about the error. For the GPR standard deviation, we find that often predictions with an increasing standard deviation also have an increasing systematical bias, which is not captured by the uncertainty. In these cases, selecting training samples with the highest uncertainty leads to a model with a worse test error compared to random sampling. We conclude that confidence intervals, which are derived from the predictive standard deviation, can be highly overconfident. Selecting samples with high GPR standard deviation leads to a model that overemphasizes the borders of the configuration space represented in the fixed dataset. This may result in worse performance in more densely sampled areas but better generalization for extrapolation tasks.
- Abstract(参考訳): 機械学習の原子間ポテンシャル(MLIP)は、高価な量子化学計算の効率的な置き換えとして大きな進歩を見せている。
MLIPの不確実性推定は、導入した追加モデルエラーを定量化し、この情報をアクティブな学習戦略に活用するために重要である。
ガウス過程回帰に基づくMLIPは、可能な不確実性尺度として標準偏差を与える。
別のアプローチはアンサンブルに基づく不確実性である。
これらの不確実性対策は、アクティブラーニングに適用されているが、それらがエラーとどのように相関しているかを研究することは稀であり、アクティブラーニングが実際にランダムサンプリング戦略より優れているかどうかは必ずしも明らかではない。
我々は、クーロンおよびSOAP表現を持つGPRモデルを、ポテンシャルエネルギー表面と分子の励起エネルギーを予測する入力として考える。
我々は,GPRの分散とアンサンブルに基づく不確かさが誤差とどのように関係しているか,また,固定された構成空間から最も不確実なサンプルを選択することによりモデル性能が向上するかを評価する。
アンサンブルに基づく不確実性推定では、エラーに関する情報は提供されないことが多い。
GPR標準偏差の場合、標準偏差の増大による予測も体系的偏差が増加し、不確実性によって捉えられないことが判明する。
このような場合、最も不確実性の高いトレーニングサンプルを選択すると、ランダムサンプリングと比較してテストエラーがひどいモデルになる。
予測標準偏差から導かれる信頼区間は極めて過度に信頼される可能性があると結論付けている。
GPR標準偏差の高いサンプルを選択することは、固定データセットに表される構成空間の境界を過度に強調するモデルにつながる。
これにより、より密集したサンプル領域では性能が低下するが、外挿タスクの一般化が向上する。
関連論文リスト
- Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning [0.19418036471925312]
深部強化学習における一般化されたガウス誤差モデリングのための新しい枠組みを提案する。
我々はデータ依存型アレタリック不確実性の推定と緩和を改善する。
ポリシー勾配アルゴリズムによる実験は、大幅な性能向上を示す。
論文 参考訳(メタデータ) (2024-08-05T08:12:25Z) - Evaluating AI systems under uncertain ground truth: a case study in
dermatology [44.80772162289557]
本稿では,アノテーションの不確実性を測定するための指標を提案し,評価のための不確実性調整指標を提案する。
本稿では,本フレームワークを皮膚条件分類に応用した症例スタディとして,アノテーションを診断の形で提供した画像について述べる。
論文 参考訳(メタデータ) (2023-07-05T10:33:45Z) - Graph Neural Network Interatomic Potential Ensembles with Calibrated
Aleatoric and Epistemic Uncertainty on Energy and Forces [9.378581265532006]
本稿では,エネルギーと力の正確な予測を行うために,グラフニューラルネットワークアンサンブルモデルのトレーニングと再構成のための完全なフレームワークを提案する。
提案手法は, てんかんとアラート的不確実性の両方を考慮し, 全不確実性はホック後に再検討する。
予測性能と不確実性校正の詳細な解析を行う。
論文 参考訳(メタデータ) (2023-05-10T13:03:06Z) - Confidence and Dispersity Speak: Characterising Prediction Matrix for
Unsupervised Accuracy Estimation [51.809741427975105]
この研究は、ラベルを使わずに、分散シフト下でのモデルの性能を評価することを目的としている。
我々は、両方の特性を特徴付けるのに有効であることが示されている核規範を用いる。
核の基準は既存の手法よりも正確で堅牢であることを示す。
論文 参考訳(メタデータ) (2023-02-02T13:30:48Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Identifying Incorrect Classifications with Balanced Uncertainty [21.130311978327196]
不確実性推定は、コストに敏感なディープラーニングアプリケーションには不可欠である。
本研究では,不確実性推定における不均衡を2種類の分布バイアスとしてモデル化するための分布不均衡を提案する。
そこで我々は,新たな分布的焦点損失目標を持つ不確実性推定器を学習する,バランスト・トゥルー・クラス確率フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-15T11:52:31Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - CRUDE: Calibrating Regression Uncertainty Distributions Empirically [4.552831400384914]
機械学習における校正された不確実性推定は、自動運転車、医療、天気予報、気候予報など多くの分野において重要である。
本稿では,特定の不確実性分布を仮定しない回帰設定のキャリブレーション手法を提案する: 回帰不確実性分布のキャリブレーション(CRUDE)。
CRUDEは、最先端技術よりも、一貫してシャープで、校正され、正確な不確実性の推定値を示す。
論文 参考訳(メタデータ) (2020-05-26T03:08:43Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。