論文の概要: Vision Language Transformers: A Survey
- arxiv url: http://arxiv.org/abs/2307.03254v1
- Date: Thu, 6 Jul 2023 19:08:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-10 14:05:16.167678
- Title: Vision Language Transformers: A Survey
- Title(参考訳): Vision Language Transformers: 調査
- Authors: Clayton Fields, Casey Kennington
- Abstract要約: イメージを記述するキャプションに関する質問に答えたり、生成したりするといった視覚言語タスクは、コンピュータが実行するのが難しいタスクである。
最近の研究は、ciptvaswani 2017で導入された事前訓練されたトランスフォーマーアーキテクチャを視覚言語モデリングに適用している。
トランスフォーマーモデルは、以前のビジョン言語モデルよりも性能と汎用性を大幅に改善した。
- 参考スコア(独自算出の注目度): 0.9137554315375919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision language tasks, such as answering questions about or generating
captions that describe an image, are difficult tasks for computers to perform.
A relatively recent body of research has adapted the pretrained transformer
architecture introduced in \citet{vaswani2017attention} to vision language
modeling. Transformer models have greatly improved performance and versatility
over previous vision language models. They do so by pretraining models on a
large generic datasets and transferring their learning to new tasks with minor
changes in architecture and parameter values. This type of transfer learning
has become the standard modeling practice in both natural language processing
and computer vision. Vision language transformers offer the promise of
producing similar advancements in tasks which require both vision and language.
In this paper, we provide a broad synthesis of the currently available research
on vision language transformer models and offer some analysis of their
strengths, limitations and some open questions that remain.
- Abstract(参考訳): イメージを記述するキャプションに関する質問に答えたり、生成したりするといった視覚言語タスクは、コンピュータが実行するのが難しいタスクである。
比較的最近の研究機関は、‘citet{vaswani2017attention} で導入された事前訓練されたトランスフォーマーアーキテクチャを視覚言語モデリングに応用した。
トランスフォーマーモデルは、以前のビジョン言語モデルよりも性能と汎用性を大幅に改善した。
大規模なジェネリックデータセットでモデルを事前トレーニングし、アーキテクチャやパラメータ値に小さな変更を加えることで、学習を新しいタスクに移す。
この種の伝達学習は、自然言語処理とコンピュータビジョンの両方において標準モデリングの実践となっている。
視覚言語トランスフォーマーは、視覚と言語の両方を必要とするタスクで同様の進歩を生み出すことを約束する。
本稿では,現在利用可能な視覚言語トランスフォーマーモデルに関する幅広い研究の合成を行い,その強み,限界,未解決の疑問について分析する。
関連論文リスト
- A Review of Transformer-Based Models for Computer Vision Tasks: Capturing Global Context and Spatial Relationships [0.5639904484784127]
トランスフォーマーモデルによる自然言語処理(NLP)の展望の変化
これらのモデルは、長距離依存やコンテキスト情報をキャプチャする能力で有名である。
コンピュータビジョンにおけるトランスフォーマーモデルの研究の方向性と応用について論じる。
論文 参考訳(メタデータ) (2024-08-27T16:22:18Z) - Language-Driven Representation Learning for Robotics [115.93273609767145]
ロボット工学における視覚表現学習の最近の研究は、日々の作業を行う人間の大規模なビデオデータセットから学ぶことの可能性を実証している。
人間のビデオやキャプションから言語による表現学習を行うためのフレームワークを提案する。
我々は、Voltronの言語駆動学習が、特に高レベル制御を必要とするターゲット問題において、先行技術よりも優れていることを発見した。
論文 参考訳(メタデータ) (2023-02-24T17:29:31Z) - Is Multimodal Vision Supervision Beneficial to Language? [2.216702991322677]
ビジョン(イメージとビデオ)事前トレーニングは、マルチモーダルタスクで最先端の結果を得た最近の一般的なパラダイムである。
我々は,これらのモデルのスタンドアロンテキストエンコーダの言語表現性能と,視覚監督を通して学習したテキストエンコーダの言語表現性能を比較した。
論文 参考訳(メタデータ) (2023-02-10T02:22:44Z) - Instruction-Following Agents with Multimodal Transformer [95.70039658112873]
本稿では,視覚環境下での指示追従課題をロボットが解くための,シンプルで効果的なモデルを提案する。
本手法は,視覚観察と言語指示を符号化したマルチモーダルトランスフォーマーからなる。
この統一型トランスモデルは, シングルタスクとマルチタスクの両方で, 最先端のトレーニング済みあるいは訓練済みのスクラッチ手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-24T17:46:47Z) - PaLI: A Jointly-Scaled Multilingual Language-Image Model [110.10710554358455]
PaLI(Pathways Language and Image Model)は、このアプローチを言語と視覚の合同モデリングに拡張するモデルである。
我々は、100以上の言語で10B画像とテキストを含む新しい画像テキストトレーニングセットに基づいて、事前学習タスクの多言語混合を作成する。
論文 参考訳(メタデータ) (2022-09-14T17:24:07Z) - Pre-training image-language transformers for open-vocabulary tasks [53.446599611203474]
本稿では,様々なタスクの混合に基づく視覚・言語トランスフォーマーモデルに対する事前学習手法を提案する。
本稿では,事前学習における画像テキストキャプションデータの利用について検討する。
本研究では,視覚質問応答,視覚的エンターテイメント,キャプションなど,テキスト生成型視覚+言語タスクの手法の評価を行い,標準的な事前学習手法よりも大きな効果を示した。
論文 参考訳(メタデータ) (2022-09-09T16:11:11Z) - Episodic Transformer for Vision-and-Language Navigation [142.6236659368177]
本稿では,長時間のサブタスク処理と複雑なヒューマンインストラクションの理解という2つの課題に取り組むことに焦点を当てる。
エピソード変換器(E.T.)を提案する。
言語入力と視覚観察と行動の全エピソード履歴を符号化するマルチモーダルトランスフォーマーである。
我々のアプローチは、挑戦的なALFREDベンチマークに新たな技術状況を設定し、見つからないテストの分割で38.4%と8.5%のタスク成功率を達成した。
論文 参考訳(メタデータ) (2021-05-13T17:51:46Z) - Transformers in Vision: A Survey [101.07348618962111]
トランスフォーマーは、入力シーケンス要素間の長い依存関係をモデリングし、シーケンスの並列処理をサポートします。
変圧器は設計に最小限の誘導バイアスを必要とし、自然にセット関数として適しています。
本調査は,コンピュータビジョン分野におけるトランスフォーマーモデルの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2021-01-04T18:57:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。