Application of Spherical Convolutional Neural Networks to Image Reconstruction and Denoising in Nuclear Medicine
- URL: http://arxiv.org/abs/2307.03298v3
- Date: Thu, 30 Jan 2025 22:53:22 GMT
- Title: Application of Spherical Convolutional Neural Networks to Image Reconstruction and Denoising in Nuclear Medicine
- Authors: Amirreza Hashemi, Yuemeng Feng, Arman Rahmim, Hamid Sabet,
- Abstract summary: equivariant neural networks are efficient and high-performance frameworks for image reconstruction and denoising in nuclear medicine.
We implemented and evaluated equivariant spherical CNNs for 2- and 3-dimensional medical imaging problems.
Our results demonstrate superior quality and computational efficiency of SCNNs in both image reconstruction and denoising benchmark problems.
- Score: 0.31923933006157473
- License:
- Abstract: This work investigates use of equivariant neural networks as efficient and high-performance frameworks for image reconstruction and denoising in nuclear medicine. Our work aims to tackle limitations of conventional Convolutional Neural Networks (CNNs), which require significant training. We investigated equivariant networks, aiming to reduce CNN's dependency on specific training sets. Specifically, we implemented and evaluated equivariant spherical CNNs (SCNNs) for 2- and 3-dimensional medical imaging problems. Our results demonstrate superior quality and computational efficiency of SCNNs in both image reconstruction and denoising benchmark problems. Furthermore, we propose a novel approach to employ SCNNs as a complement to conventional image reconstruction tools, enhancing the outcomes while reducing reliance on the training set. Across all cases, we observed significant decrease in computational cost by leveraging the inherent inclusion of equivariant representatives while achieving the same or higher quality of image processing using SCNNs compared to CNNs. Additionally, we explore the potential of SCNNs for broader tomography applications, particularly those requiring rotationally variant representation.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Defending Spiking Neural Networks against Adversarial Attacks through Image Purification [20.492531851480784]
Spiking Neural Networks (SNNs) aim to bridge the gap between neuroscience and machine learning.
SNNs are vulnerable to adversarial attacks like convolutional neural networks.
We propose a biologically inspired methodology to enhance the robustness of SNNs.
arXiv Detail & Related papers (2024-04-26T00:57:06Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - SO(2) and O(2) Equivariance in Image Recognition with
Bessel-Convolutional Neural Networks [63.24965775030674]
This work presents the development of Bessel-convolutional neural networks (B-CNNs)
B-CNNs exploit a particular decomposition based on Bessel functions to modify the key operation between images and filters.
Study is carried out to assess the performances of B-CNNs compared to other methods.
arXiv Detail & Related papers (2023-04-18T18:06:35Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Spiking Neural Networks for Visual Place Recognition via Weighted
Neuronal Assignments [24.754429120321365]
Spiking neural networks (SNNs) offer both compelling potential advantages, including energy efficiency and low latencies.
One promising area for high performance SNNs is template matching and image recognition.
This research introduces the first high performance SNN for the Visual Place Recognition (VPR) task.
arXiv Detail & Related papers (2021-09-14T05:40:40Z) - Convolutional versus Self-Organized Operational Neural Networks for
Real-World Blind Image Denoising [25.31981236136533]
We tackle the real-world blind image denoising problem by employing, for the first time, a deep Self-ONN.
Deep Self-ONNs consistently achieve superior results with performance gains of up to 1.76dB in PSNR.
arXiv Detail & Related papers (2021-03-04T14:49:17Z) - Self-Organized Operational Neural Networks for Severe Image Restoration
Problems [25.838282412957675]
Discnative learning based on convolutional neural networks (CNNs) aims to perform image restoration by learning from training examples of noisy-clean image pairs.
We claim that this is due to the inherent linear nature of convolution-based transformation, which is inadequate for handling severe restoration problems.
We propose a self-organizing variant of ONNs, Self-ONNs, for image restoration, which synthesizes novel nodal transformations onthe-fly.
arXiv Detail & Related papers (2020-08-29T02:19:41Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Momentum-Net for Low-Dose CT Image Reconstruction [13.084578404699172]
This paper applies the recent fast iterative neural network framework, Momentum-Net, using appropriate models to low-dose X-ray computed tomography (LDCT) image reconstruction.
We show that the proposed Momentum-Net architecture significantly improves image reconstruction accuracy, compared to a state-of-the-art noniterative image denoising deep neural network (NN), WavResNet (in LDCT)
We also investigated the spectral normalization technique that applies to image refining NN learning to satisfy the nonexpansive NN property; results show that this does not improve the image reconstruction performance of Momentum-Net
arXiv Detail & Related papers (2020-02-27T10:26:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.