MALIBO: Meta-learning for Likelihood-free Bayesian Optimization
- URL: http://arxiv.org/abs/2307.03565v3
- Date: Fri, 28 Jun 2024 12:55:35 GMT
- Title: MALIBO: Meta-learning for Likelihood-free Bayesian Optimization
- Authors: Jiarong Pan, Stefan Falkner, Felix Berkenkamp, Joaquin Vanschoren,
- Abstract summary: We propose a novel meta-learning BO approach that bypasses the surrogate model and directly learns the utility of queries across tasks.
Our method explicitly models task uncertainty and includes an auxiliary model to enable robust adaptation to new tasks.
Our method demonstrates strong anytime performance and outperforms state-of-the-art meta-learning BO methods in various benchmarks.
- Score: 11.097684270692355
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Bayesian optimization (BO) is a popular method to optimize costly black-box functions. While traditional BO optimizes each new target task from scratch, meta-learning has emerged as a way to leverage knowledge from related tasks to optimize new tasks faster. However, existing meta-learning BO methods rely on surrogate models that suffer from scalability issues and are sensitive to observations with different scales and noise types across tasks. Moreover, they often overlook the uncertainty associated with task similarity. This leads to unreliable task adaptation when only limited observations are obtained or when the new tasks differ significantly from the related tasks. To address these limitations, we propose a novel meta-learning BO approach that bypasses the surrogate model and directly learns the utility of queries across tasks. Our method explicitly models task uncertainty and includes an auxiliary model to enable robust adaptation to new tasks. Extensive experiments show that our method demonstrates strong anytime performance and outperforms state-of-the-art meta-learning BO methods in various benchmarks.
Related papers
- Meta-Learning with Heterogeneous Tasks [42.695853959923625]
Heterogeneous Tasks Robust Meta-learning (HeTRoM)
An efficient iterative optimization algorithm based on bi-level optimization.
Results demonstrate that our method provides flexibility, enabling users to adapt to diverse task settings.
arXiv Detail & Related papers (2024-10-24T16:32:23Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Algorithm Design for Online Meta-Learning with Task Boundary Detection [63.284263611646]
We propose a novel algorithm for task-agnostic online meta-learning in non-stationary environments.
We first propose two simple but effective detection mechanisms of task switches and distribution shift.
We show that a sublinear task-averaged regret can be achieved for our algorithm under mild conditions.
arXiv Detail & Related papers (2023-02-02T04:02:49Z) - Efficient Meta Reinforcement Learning for Preference-based Fast
Adaptation [17.165083095799712]
We study the problem of few-shot adaptation in the context of human-in-the-loop reinforcement learning.
We develop a meta-RL algorithm that enables fast policy adaptation with preference-based feedback.
arXiv Detail & Related papers (2022-11-20T03:55:09Z) - Meta-Learning with Self-Improving Momentum Target [72.98879709228981]
We propose Self-improving Momentum Target (SiMT) to improve the performance of a meta-learner.
SiMT generates the target model by adapting from the temporal ensemble of the meta-learner.
We show that SiMT brings a significant performance gain when combined with a wide range of meta-learning methods.
arXiv Detail & Related papers (2022-10-11T06:45:15Z) - On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning [71.55412580325743]
We show that multi-task pretraining with fine-tuning on new tasks performs equally as well, or better, than meta-pretraining with meta test-time adaptation.
This is encouraging for future research, as multi-task pretraining tends to be simpler and computationally cheaper than meta-RL.
arXiv Detail & Related papers (2022-06-07T13:24:00Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Submodular Meta-Learning [43.15332631500541]
We introduce a discrete variant of the meta-learning framework to improve performance on future tasks.
Our approach aims at using prior data, i.e., previously visited tasks, to train a proper initial solution set.
We show that our framework leads to a significant reduction in computational complexity in solving the new tasks while incurring a small performance loss.
arXiv Detail & Related papers (2020-07-11T21:02:48Z) - Model-based Adversarial Meta-Reinforcement Learning [38.28304764312512]
We propose Model-based Adversarial Meta-Reinforcement Learning (AdMRL)
AdMRL aims to minimize the worst-case sub-optimality gap across all tasks in a family of tasks.
We evaluate our approach on several continuous control benchmarks and demonstrate its efficacy in the worst-case performance over all tasks.
arXiv Detail & Related papers (2020-06-16T02:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.