Entangled multiplets, asymmetry, and quantum Mpemba effect in dissipative systems
- URL: http://arxiv.org/abs/2402.02918v3
- Date: Fri, 21 Jun 2024 18:03:09 GMT
- Title: Entangled multiplets, asymmetry, and quantum Mpemba effect in dissipative systems
- Authors: Fabio Caceffo, Sara Murciano, Vincenzo Alba,
- Abstract summary: We conjecture a quasiparticle picture for the charged moments of the reduced density matrix, which are the main ingredients to construct the asymmetry.
By using the Lindblad master equation, we study the effect of gain and loss dissipation on the entanglement asymmetry.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the entanglement asymmetry emerged as an informative tool to understand dynamical symmetry restoration in out-of-equilibrium quantum many-body systems after a quantum quench. For integrable systems the asymmetry can be understood in the space-time scaling limit via the quasiparticle picture, as it was pointed out in Ref. [1]. However, a quasiparticle picture for quantum quenches from generic initial states was still lacking. Here we conjecture a full-fledged quasiparticle picture for the charged moments of the reduced density matrix, which are the main ingredients to construct the asymmetry. Our formula works for quenches producing entangled multiplets of an arbitrary number of excitations. We benchmark our results in the $XX$ spin chain. First, by using an elementary approach based on the multidimensional stationary phase approximation we provide an $\textit{ab initio}$ rigorous derivation of the dynamics of the charged moments for the quench treated in [2]. Then, we show that the same results can be straightforwardly obtained within our quasiparticle picture. As a byproduct of our analysis, we obtain a general criterion ensuring a vanishing entanglement asymmetry at long times. Next, by using the Lindblad master equation, we study the effect of gain and loss dissipation on the entanglement asymmetry. Specifically, we investigate the fate of the so-called quantum Mpemba effect (QME) in the presence of dissipation. We show that dissipation can induce QME even if unitary dynamics does not show it, and we provide a quasiparticle-based interpretation of the condition for the QME.
Related papers
- Quantum Mpemba Effect in Random Circuits [0.0]
We study the quantum Mpemba effect in charge-preserving random circuits on qudits via entanglement asymmetry.
We show that the more asymmetric certain classes of initial states are, the faster they restore symmetry and reach the grand-canonical ensemble.
Our results represent a significant advancement in clarifying the emergence of Mpemba physics in generic systems.
arXiv Detail & Related papers (2024-05-23T12:51:54Z) - Multiple crossing during dynamical symmetry restoration and implications for the quantum Mpemba effect [0.0]
We show how, by tuning the initial state, the symmetry dynamics in free fermionic systems can display much richer behaviour than seen previously.
In particular, for certain classes of initial states, including ground states of free fermionic models with long-range couplings, the entanglement asymmetry can exhibit multiple crossings.
arXiv Detail & Related papers (2024-05-07T15:57:45Z) - Entanglement asymmetry and quantum Mpemba effect in two-dimensional free-fermion systems [0.0]
The quantum Mpemba effect is the counter-intuitive non-equilibrium phenomenon wherein the dynamic restoration of a broken symmetry occurs more rapidly when the initial state exhibits a higher degree of symmetry breaking.
Here we focus on a two-dimensional free-fermion lattice employing the entanglement asymmetry as a measure of symmetry breaking.
We find that the quantum Mpemba effect is strongly affected by the size of the system in the transverse dimension, with the potential to either enhance or spoil the phenomenon depending on the initial states.
arXiv Detail & Related papers (2024-03-07T13:38:40Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - Entanglement asymmetry and quantum Mpemba effect in the XY spin chain [0.0]
Entanglement asymmetry is a quantity introduced to measure how much a symmetry is broken in a part of an extended quantum system.
We study the entanglement asymmetry at equilibrium taking the ground state of the XY spin chain.
We find that the power law governing symmetry restoration depends discontinuously on whether the initial state is critical or not.
arXiv Detail & Related papers (2023-10-11T14:10:53Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Entanglement asymmetry as a probe of symmetry breaking [0.0]
In extended quantum systems, quantifying how much a symmetry is broken is intrinsically bound to the subsystem of interest.
We introduce a subsystem measure of symmetry breaking that we dub entanglement asymmetry.
We find, expectedly, that larger is the subsystem, slower is the restoration, but also the counterintuitive result that more the symmetry is initially broken, faster it is restored.
arXiv Detail & Related papers (2022-07-29T14:03:30Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.