論文の概要: VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel
Synthesis
- arxiv url: http://arxiv.org/abs/2307.03592v1
- Date: Fri, 7 Jul 2023 13:35:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-10 12:21:29.303500
- Title: VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel
Synthesis
- Title(参考訳): VesselVAE:3次元血管合成のための再帰的変分オートエンコーダ
- Authors: Paula Feldman, Miguel Fainstein, Viviana Siless, Claudio Delrieux,
Emmanuel Iarussi
- Abstract要約: 血管の3次元形状を合成するためのデータ駆動型生成フレームワークを提案する。
VesselVAEは、容器の階層構造を完全に活用し、低次元多様体を学ぶ。
我々は、正確で多様な血管の3Dモデルを生成し、医療や外科訓練、血行動態シミュレーション、その他多くの目的に欠かせない。
- 参考スコア(独自算出の注目度): 0.879967413208593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a data-driven generative framework for synthesizing blood vessel
3D geometry. This is a challenging task due to the complexity of vascular
systems, which are highly variating in shape, size, and structure. Existing
model-based methods provide some degree of control and variation in the
structures produced, but fail to capture the diversity of actual anatomical
data. We developed VesselVAE, a recursive variational Neural Network that fully
exploits the hierarchical organization of the vessel and learns a
low-dimensional manifold encoding branch connectivity along with geometry
features describing the target surface. After training, the VesselVAE latent
space can be sampled to generate new vessel geometries. To the best of our
knowledge, this work is the first to utilize this technique for synthesizing
blood vessels. We achieve similarities of synthetic and real data for radius
(.97), length (.95), and tortuosity (.96). By leveraging the power of deep
neural networks, we generate 3D models of blood vessels that are both accurate
and diverse, which is crucial for medical and surgical training, hemodynamic
simulations, and many other purposes.
- Abstract(参考訳): 血管の3次元形状を合成するためのデータ駆動型生成フレームワークを提案する。
これは、形状、大きさ、構造に非常にばらつきがある血管系の複雑さのため、難しい課題である。
既存のモデルに基づく手法は、生成された構造のある程度の制御と変動を提供するが、実際の解剖学的データの多様性を捉えられなかった。
本研究では,血管の階層構造を完全に活用した再帰的変分ニューラルネットワークであるVesselVAEを開発し,ターゲット表面を記述する幾何学的特徴とともに分岐接続を符号化する低次元多様体を学習した。
訓練後、VesselVAE潜水空間を採取して新しい容器ジオメトリーを生成することができる。
私たちの知る限りでは、この研究は血管の合成にこの技術を利用する最初の試みです。
合成データと実データとの類似性は, 半径 (.97), 長さ (.95), ねじれ (.96) である。
深層ニューラルネットワークのパワーを活用することで、正確で多様な血管の3Dモデルを生成します。
関連論文リスト
- Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario [0.8749675983608172]
このモデルは、脳動脈瘤を効率的に検出するために、3D畳み込みニューラルネットワークが使用できる脳動脈のデータセットを提供することを目的としている。
本研究では, 人工血管モデルを網羅的に記述し, 動脈瘤の分節と検出のために設計されたニューラルネットワークを構築し, 合成モデルデータの拡張により得られた性能ギャップの詳細な評価を行う。
論文 参考訳(メタデータ) (2024-11-04T18:08:24Z) - LaB-GATr: geometric algebra transformers for large biomedical surface and volume meshes [1.4637995279014533]
高忠実度メッシュを用いた学習のための幾何学的トークン化を備えた深層ニューラルネットワークLaB-GATrを提案する。
LaB-GATrは、心臓血管血行動態モデリングと神経発達型表現型予測の3つの課題について最先端の結果を得る。
以上の結果から,LaB-GATrは高忠実度メッシュで学習するための強力なアーキテクチャであることを示す。
論文 参考訳(メタデータ) (2024-03-12T11:19:46Z) - Robust semi-automatic vessel tracing in the human retinal image by an
instance segmentation neural network [1.324564545341267]
ケースセグメンテーションニューラルネットワーク(InSegNN)による人間の眼底画像に対する頑健な半自動血管追跡アルゴリズムの新たなアプローチを提案する。
InSegNNは、異なる血管樹を個別に分離し、ラベル付けすることで、枝分かれ全体を通して各木をトレースすることができる。
底面画像から個々の血管木を抽出し,同時に血管階層情報を保持することを実証した。
論文 参考訳(メタデータ) (2024-02-15T16:25:28Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
オーバーセグメントニューロン間の接続を予測し,人間の作業量を削減することを目的としている。
最初はFlyTracingという名前のデータセットを構築しました。
本稿では,高密度なボリュームEM画像の埋め込みを生成するための,新しい接続性を考慮したコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-05T19:45:12Z) - Modeling and hexahedral meshing of cerebral arterial networks from
centerlines [0.0]
中心線に基づく表現は、小さな血管を持つ大きな血管ネットワークをモデル化するために広く用いられている。
中心線からCFDに適した構造を持つヘキサヘドラルメッシュを自動生成する手法を提案する。
我々は60の脳血管ネットワークのデータセットを網羅し,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2022-01-20T16:30:17Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
本稿では,3次元シーンの多様な特徴パターンを捉えるニューラルシーン合成手法を提案する。
提案手法は,ニューラルネットワークと従来のシーン合成手法の双方の長所を結合する。
論文 参考訳(メタデータ) (2021-08-30T19:45:07Z) - Physical model simulator-trained neural network for computational 3D
phase imaging of multiple-scattering samples [1.112751058850223]
サンプルコントラストを均質化する新しいモデルベースデータ正規化前処理法を開発した。
上皮扁平上皮細胞およびCaenorhabditis elegans wormsの実験的測定におけるこのフレームワークの能力を示す。
論文 参考訳(メタデータ) (2021-03-29T17:43:56Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
3次元医用画像からの血管の自動抽出は血管疾患の診断に不可欠である。
既存の方法では、3次元画像からそのような細い管状構造を分割する際に、抽出された容器の不連続に悩まされることがある。
抽出された船舶の連続性を維持するためには、地球的幾何学を考慮に入れる必要があると論じる。
この課題を解決するためのハイブリッド表現学習手法を提案します。
論文 参考訳(メタデータ) (2020-12-14T05:22:49Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
3Dメッシュの表現学習は多くのコンピュータビジョンやグラフィックスアプリケーションにおいて重要である。
局所構造認識型異方性畳み込み操作(LSA-Conv)を提案する。
本モデルでは,3次元形状復元において最先端の手法に比べて顕著な改善が得られた。
論文 参考訳(メタデータ) (2020-04-21T13:40:03Z) - clDice -- A Novel Topology-Preserving Loss Function for Tubular
Structure Segmentation [57.20783326661043]
中心線Dice (short clDice) と呼ばれる新しい類似度尺度を導入する。
理論的には、clDiceは2次元および3次元のセグメンテーションにおけるホモトピー同値までのトポロジー保存を保証する。
我々は、船舶、道路、ニューロン(2Dと3D)を含む5つの公開データセットでソフトクライス損失をベンチマークした。
論文 参考訳(メタデータ) (2020-03-16T16:27:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。