論文の概要: Modeling and hexahedral meshing of cerebral arterial networks from
centerlines
- arxiv url: http://arxiv.org/abs/2201.08279v2
- Date: Tue, 13 Jun 2023 07:50:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 18:52:29.415586
- Title: Modeling and hexahedral meshing of cerebral arterial networks from
centerlines
- Title(参考訳): 中心線からの脳動脈ネットワークのモデリングとヘキサヘドラルメッシュ化
- Authors: M\'eghane Decroocq, Carole Frindel, Pierre Roug\'e, Makoto Ohta and
Guillaume Lavou\'e
- Abstract要約: 中心線に基づく表現は、小さな血管を持つ大きな血管ネットワークをモデル化するために広く用いられている。
中心線からCFDに適した構造を持つヘキサヘドラルメッシュを自動生成する手法を提案する。
我々は60の脳血管ネットワークのデータセットを網羅し,本手法の有効性を実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computational fluid dynamics (CFD) simulation provides valuable information
on blood flow from the vascular geometry. However, it requires extracting
precise models of arteries from low-resolution medical images, which remains
challenging. Centerline-based representation is widely used to model large
vascular networks with small vessels, as it encodes both the geometric and
topological information and facilitates manual editing. In this work, we
propose an automatic method to generate a structured hexahedral mesh suitable
for CFD directly from centerlines. We addressed both the modeling and meshing
tasks. We proposed a vessel model based on penalized splines to overcome the
limitations inherent to the centerline representation, such as noise and
sparsity. The bifurcations are reconstructed using a parametric model based on
the anatomy that we extended to planar n-furcations. Finally, we developed a
method to produce a volume mesh with structured, hexahedral, and flow-oriented
cells from the proposed vascular network model. The proposed method offers
better robustness to the common defects of centerlines and increases the mesh
quality compared to state-of-the-art methods. As it relies on centerlines
alone, it can be applied to edit the vascular model effortlessly to study the
impact of vascular geometry and topology on hemodynamics. We demonstrate the
efficiency of our method by entirely meshing a dataset of 60 cerebral vascular
networks. 92% of the vessels and 83% of the bifurcations were meshed without
defects needing manual intervention, despite the challenging aspect of the
input data. The source code is released publicly.
- Abstract(参考訳): 計算流体力学(CFD)シミュレーションは血管形状からの血流に関する貴重な情報を提供する。
しかし、低解像度の医療画像から動脈の正確なモデルを抽出する必要がある。
中心線に基づく表現は、幾何学的および位相的情報をエンコードし、手作業による編集を容易にするため、小さな血管で大きな血管ネットワークをモデル化するために広く用いられている。
本研究では,中心線から直接CFDに適した構造を持つヘキサヘドラルメッシュを自動生成する手法を提案する。
モデリングとメッシュ処理の両方に対処しました。
我々は,音や空間といった中心表現に固有の制約を克服するために,ペナル化スプラインに基づく容器モデルを提案した。
分岐は平面n-分岐に拡張した解剖に基づくパラメトリックモデルを用いて再構成される。
最後に, 提案した血管網モデルを用いて, 構造, ヘキサヘドラル, フロー指向のセルを有する体積メッシュを作製する手法を開発した。
提案手法は,センタラインの共通欠陥に対するロバスト性が向上し,最先端手法と比較してメッシュ品質が向上する。
中心線のみに依存するため、血管の形状とトポロジーが血行動態に与える影響を研究するために、血管モデルの編集を無力に行うことができる。
我々は60の脳血管網のデータセットを網羅し,本手法の有効性を実証した。
入力データの難易度にもかかわらず、船の92%と分岐の83%は手動で介入する必要なくメッシュ化された。
ソースコードは公開されている。
関連論文リスト
- KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
カルマンフィルタを用いた線形変形型クロスアテンション(LDCA)モジュールを用いた血管セグメンテーションのための新しいネットワーク(KaLDeX)を提案する。
我々のアプローチは、カルマンフィルタ(KF)ベースの線形変形可能な畳み込み(LD)とクロスアテンション(CA)モジュールの2つの重要なコンポーネントに基づいている。
提案手法は,網膜基底画像データセット(DRIVE,CHASE_BD1,STARE)とOCTA-500データセットの3mm,6mmを用いて評価した。
論文 参考訳(メタデータ) (2024-10-28T16:00:42Z) - KLDD: Kalman Filter based Linear Deformable Diffusion Model in Retinal Image Segmentation [51.03868117057726]
本稿では,網膜血管分割のためのKLDDモデルを提案する。
我々のモデルは、変形可能な畳み込みの柔軟な受容場を利用して、分割を反復的に洗練する拡散過程を用いる。
実験は網膜基底画像データセット(DRIVE,CHASE_DB1)とOCTA-500データセットの3mm,6mmで評価された。
論文 参考訳(メタデータ) (2024-09-19T14:21:38Z) - A Hybrid Approach to Full-Scale Reconstruction of Renal Arterial Network [5.953404851562665]
腎血管ネットワークの主観的なモデルを構築するためのハイブリッドフレームワークを提案する。
我々は,大動脈の半自動分割と微小CTスキャンによる大脳皮質領域の推定を出発点として用いた。
ラット腎から得られた再建データと既存の解剖学的データとの統計的対応性を示した。
論文 参考訳(メタデータ) (2023-03-03T10:39:25Z) - Mesh convolutional neural networks for wall shear stress estimation in
3D artery models [7.7393800633675465]
CFDと同じ有限要素表面メッシュ上で直接動作するメッシュ畳み込みニューラルネットワークを提案する。
このメッシュ上での3次元壁せん断応力ベクトルを正確に予測できることが,我々のフレキシブルディープラーニングモデルにより示されている。
論文 参考訳(メタデータ) (2021-09-10T11:32:05Z) - Deep Open Snake Tracker for Vessel Tracing [32.97987423431042]
中心線と半径を持つ3次元医用画像の血管構造をモデル化した血管トレースは、血管の健康に有用な情報を提供することができる。
既存のアルゴリズムは開発されているが、不完全または不正確な容器追跡のような永続的な問題もある。
本稿では3次元画像中の容器をトレースする深層学習に基づく開曲線アクティブな輪郭モデル(DOST)を提案する。
論文 参考訳(メタデータ) (2021-07-19T17:59:31Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
解剖学的構造の3次元デライン化は、医用画像解析の基本的な目標である。
ディープラーニング以前は、解剖学的制約を課し高品質の表面を作り出す統計的形状モデルはコア技術だった。
我々は,CNNの表現力とSSMの頑健さを合体させるデライン化の新しい手法であるディープ暗黙的統計的形状モデル(DISSMs)を提案する。
論文 参考訳(メタデータ) (2021-04-07T01:15:06Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
3次元医用画像からの血管の自動抽出は血管疾患の診断に不可欠である。
既存の方法では、3次元画像からそのような細い管状構造を分割する際に、抽出された容器の不連続に悩まされることがある。
抽出された船舶の連続性を維持するためには、地球的幾何学を考慮に入れる必要があると論じる。
この課題を解決するためのハイブリッド表現学習手法を提案します。
論文 参考訳(メタデータ) (2020-12-14T05:22:49Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
網膜血管と主要動脈を2次元基底画像と3次元CTアンギオグラフィー(CTA)スキャンで分割する,PC-Netと呼ばれる新しいディープラーニングモデルを提案する。
PC-Netでは、ピラミッド圧縮励起(PSE)モジュールが各畳み込みブロックに空間情報を導入し、より効果的なマルチスケール特徴を抽出する能力を高めている。
論文 参考訳(メタデータ) (2020-10-09T08:22:54Z) - Geometric Uncertainty in Patient-Specific Cardiovascular Modeling with
Convolutional Dropout Networks [0.0]
患者固有の心血管モデルの条件分布からサンプルを生成する新しい手法を提案する。
提案手法で導入された主な革新は、トレーニングデータから直接幾何的不確実性を学ぶ能力である。
論文 参考訳(メタデータ) (2020-09-16T00:13:12Z) - Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation [50.868845400939314]
UNetによって生成された特徴ピラミッド表現を洗練・統合するための文脈対応改良ネットワーク(CAR-Net)を提案する。
正中線における脳の構造的接続性を維持するため、我々は新しい接続性レギュラーロスを導入する。
提案手法は, パラメータを少なくし, 4つの評価指標で3つの最先端手法より優れる。
論文 参考訳(メタデータ) (2020-07-10T14:01:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。