論文の概要: Detecting the Sensing Area of A Laparoscopic Probe in Minimally Invasive
Cancer Surgery
- arxiv url: http://arxiv.org/abs/2307.03662v1
- Date: Fri, 7 Jul 2023 15:33:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-10 11:59:50.849046
- Title: Detecting the Sensing Area of A Laparoscopic Probe in Minimally Invasive
Cancer Surgery
- Title(参考訳): 低侵襲癌手術における腹腔鏡下プローブのセンシング領域の検出
- Authors: Baoru Huang, Yicheng Hu, Anh Nguyen, Stamatia Giannarou, Daniel S.
Elson
- Abstract要約: 外科腫瘍学では、外科医がリンパ節を同定し、がんを完全に切除することは困難である。
新しいテザリングラパロスコープガンマ検出器を用いて、術前に注入された放射線を局在させる。
ガンマ活動の可視化は、プローブが非イメージングであり、組織表面の活性を視覚的に示さないため、オペレーターに提示することが困難である。
- 参考スコア(独自算出の注目度): 6.0097646269887965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In surgical oncology, it is challenging for surgeons to identify lymph nodes
and completely resect cancer even with pre-operative imaging systems like PET
and CT, because of the lack of reliable intraoperative visualization tools.
Endoscopic radio-guided cancer detection and resection has recently been
evaluated whereby a novel tethered laparoscopic gamma detector is used to
localize a preoperatively injected radiotracer. This can both enhance the
endoscopic imaging and complement preoperative nuclear imaging data. However,
gamma activity visualization is challenging to present to the operator because
the probe is non-imaging and it does not visibly indicate the activity
origination on the tissue surface. Initial failed attempts used segmentation or
geometric methods, but led to the discovery that it could be resolved by
leveraging high-dimensional image features and probe position information. To
demonstrate the effectiveness of this solution, we designed and implemented a
simple regression network that successfully addressed the problem. To further
validate the proposed solution, we acquired and publicly released two datasets
captured using a custom-designed, portable stereo laparoscope system. Through
intensive experimentation, we demonstrated that our method can successfully and
effectively detect the sensing area, establishing a new performance benchmark.
Code and data are available at
https://github.com/br0202/Sensing_area_detection.git
- Abstract(参考訳): 外科腫瘍学では,術中診断ツールが欠如していることから,PETやCTなどの術前画像診断システムにおいても,リンパ節の同定やがんの完全切除が困難である。
内視鏡的放射線ガイド癌検出・切除は, 術前注入ラジオトレーサを局在化するために新しいテザリング型腹腔鏡ガンマ検出器を用いた近年評価されている。
これにより、内視鏡的画像化と術前核画像データの補完を両立できる。
しかしながら、ガンマ活動の可視化は、プローブが非イメージングであり、組織表面の活性の起源を視覚的に示さないため、オペレーターに提示することが困難である。
最初の失敗はセグメンテーションや幾何学的手法を用いたが、高次元画像の特徴とプローブ位置情報を利用することで解決できることが判明した。
本手法の有効性を示すため,この問題に対処するシンプルな回帰ネットワークを設計,実装した。
提案手法をさらに検証するため,カスタム設計のポータブルステレオ腹腔鏡システムを用いて収集した2つのデータセットを取得し,公開した。
集中的な実験を通じて,本手法が検知領域を効果的かつ効果的に検出できることを示し,新しい性能ベンチマークを構築した。
コードとデータはhttps://github.com/br020202/sensing_area_detection.gitで入手できる。
関連論文リスト
- Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
リアルタイムガイドワイヤ分割と追跡のための2段階のディープラーニングフレームワークを提案する。
第1段階では、ヨロフ5検出器が元のX線画像と合成画像を使って訓練され、ターゲットのガイドワイヤのバウンディングボックスを出力する。
第2段階では、検出された各バウンディングボックスにガイドワイヤを分割するために、新規で効率的なネットワークが提案されている。
論文 参考訳(メタデータ) (2024-04-12T20:39:19Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Monocular Microscope to CT Registration using Pose Estimation of the
Incus for Augmented Reality Cochlear Implant Surgery [3.8909273404657556]
本研究では, 外部追跡装置を必要とせず, 2次元から3次元の観察顕微鏡映像を直接CTスキャンに登録する手法を開発した。
その結果, x, y, z軸の平均回転誤差は25度未満, 翻訳誤差は2mm, 3mm, 0.55%であった。
論文 参考訳(メタデータ) (2024-03-12T00:26:08Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Gravity Network for end-to-end small lesion detection [50.38534263407915]
本稿では,医療画像の小さな病変を特異的に検出するワンステージエンド・ツー・エンド検出器を提案する。
小さな病変の正確な局在化は、その外観と、それらが見つかる様々な背景によって困難を呈する。
この新たなアーキテクチャをGravityNetと呼び、新しいアンカーを重力点と呼ぶ。
論文 参考訳(メタデータ) (2023-09-22T14:02:22Z) - Cross-Dataset Adaptation for Instrument Classification in Cataract
Surgery Videos [54.1843419649895]
特定のデータセットでこのタスクをうまく実行する最先端モデルでは、別のデータセットでテストすると、パフォーマンスが低下する。
本稿では,Barlow Adaptorと呼ばれる新しいエンドツーエンドのUnsupervised Domain Adaptation (UDA)手法を提案する。
さらに,BFAL(Barlow Feature Alignment Loss)と呼ばれる,異なるドメインにまたがる特徴を整列させる新たな損失を導入する。
論文 参考訳(メタデータ) (2023-07-31T18:14:18Z) - Live image-based neurosurgical guidance and roadmap generation using
unsupervised embedding [53.992124594124896]
本稿では,注釈付き脳外科ビデオの大規模なデータセットを活用するライブ画像のみのガイダンスを提案する。
生成されたロードマップは、トレーニングセットの手術で取られた一般的な解剖学的パスをエンコードする。
166例の腹腔鏡下腺摘出術を施行し,本法の有効性について検討した。
論文 参考訳(メタデータ) (2023-03-31T12:52:24Z) - Intra-operative Brain Tumor Detection with Deep Learning-Optimized
Hyperspectral Imaging [37.21885467891782]
グリオーマ(内因性脳腫瘍)の手術は、病変の浸潤性により困難である。
リアルタイム, 術中, ラベルフリー, 広視野の道具は使用できない。
術中指導の可能性を秘めた癌切除のための深層学習型診断ツールを構築した。
論文 参考訳(メタデータ) (2023-02-06T15:52:03Z) - A Temporal Learning Approach to Inpainting Endoscopic Specularities and
Its effect on Image Correspondence [13.25903945009516]
本稿では,時間的生成的対位ネットワーク(GAN)を用いて,隠蔽解剖学を特異性の下で描くことを提案する。
これは、胃内視鏡(Hyper-Kvasir)の生検データを用いて、完全に教師なしの方法で達成される。
また,3次元再構成とカメラモーション推定の基盤となるコンピュータビジョンタスクにおける本手法の有効性を評価する。
論文 参考訳(メタデータ) (2022-03-31T13:14:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。