論文の概要: Gravity Network for end-to-end small lesion detection
- arxiv url: http://arxiv.org/abs/2309.12876v1
- Date: Fri, 22 Sep 2023 14:02:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-25 14:18:48.298083
- Title: Gravity Network for end-to-end small lesion detection
- Title(参考訳): 終末小病変検出のための重力ネットワーク
- Authors: Ciro Russo, Alessandro Bria, Claudio Marrocco
- Abstract要約: 本稿では,医療画像の小さな病変を特異的に検出するワンステージエンド・ツー・エンド検出器を提案する。
小さな病変の正確な局在化は、その外観と、それらが見つかる様々な背景によって困難を呈する。
この新たなアーキテクチャをGravityNetと呼び、新しいアンカーを重力点と呼ぶ。
- 参考スコア(独自算出の注目度): 50.38534263407915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel one-stage end-to-end detector specifically
designed to detect small lesions in medical images. Precise localization of
small lesions presents challenges due to their appearance and the diverse
contextual backgrounds in which they are found. To address this, our approach
introduces a new type of pixel-based anchor that dynamically moves towards the
targeted lesion for detection. We refer to this new architecture as GravityNet,
and the novel anchors as gravity points since they appear to be "attracted" by
the lesions. We conducted experiments on two well-established medical problems
involving small lesions to evaluate the performance of the proposed approach:
microcalcifications detection in digital mammograms and microaneurysms
detection in digital fundus images. Our method demonstrates promising results
in effectively detecting small lesions in these medical imaging tasks.
- Abstract(参考訳): 本稿では,医療画像の小さな病変を特異的に検出するワンステージエンド・ツー・エンド検出器を提案する。
小さな病変の正確な局在は、その外観とそれらが見つかる様々な背景により困難を呈している。
これに対処するために,我々は,検出対象の病変に向かって動的に移動する新しいタイプの画素ベースのアンカーを導入する。
我々はこの新しいアーキテクチャを重力ネットと呼び,新しいアンカーを重力点と呼ぶ。
提案手法の有効性を評価するために, デジタルマンモグラムにおける微小石灰化検出と, デジタル眼底画像における微小動脈瘤検出の2つの確立された医療課題について実験を行った。
本手法は,これらの医療画像の小さな病変を効果的に検出する上で有望な結果を示す。
関連論文リスト
- MSDet: Receptive Field Enhanced Multiscale Detection for Tiny Pulmonary Nodule [17.838015589388014]
肺結節は肺癌の早期診断における重要な指標である。
従来のCT画像撮影法は、煩雑な処置、低検出率、ローカライゼーション精度の低下に悩まされていた。
肺小結節検出のためのマルチスケールアテンションおよび受容野ネットワークであるMSDetを提案する。
論文 参考訳(メタデータ) (2024-09-21T06:08:23Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - Detecting the Sensing Area of A Laparoscopic Probe in Minimally Invasive
Cancer Surgery [6.0097646269887965]
外科腫瘍学では、外科医がリンパ節を同定し、がんを完全に切除することは困難である。
新しいテザリングラパロスコープガンマ検出器を用いて、術前に注入された放射線を局在させる。
ガンマ活動の可視化は、プローブが非イメージングであり、組織表面の活性を視覚的に示さないため、オペレーターに提示することが困難である。
論文 参考訳(メタデータ) (2023-07-07T15:33:49Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Universal Lesion Detection in CT Scans using Neural Network Ensembles [5.341593824515018]
腫瘍の拡がりの下流評価を促進するため、病変の縮小の前提条件は、その検出である。
我々は,NIH DeepLesionデータセットに存在する疑わしい病変を識別するために,最先端検出ニューラルネットワークを提案する。
画像あたり65.17%の精度と91.67%の感度で1枚あたり4FPの精度で、病変を局在させる最良の検出モデルのアンサンブルを構築した。
論文 参考訳(メタデータ) (2021-11-09T00:11:01Z) - DRDrV3: Complete Lesion Detection in Fundus Images Using Mask R-CNN,
Transfer Learning, and LSTM [2.9360071145551068]
糖尿病網膜症(DR)による病変の検出・発見に最適な2つのサブモジュールからなる新しい病変検出アーキテクチャを提案する。
また、2つの一般的な評価基準を用いて、平均平均精度(mAP)とIOU(IOU)の交点であるモデルの出力を評価する。
この新たなソリューションにより、専門家は高い信頼性で病変を検出し、高い精度で損傷の重症度を推定できるという仮説を立てる。
論文 参考訳(メタデータ) (2021-08-18T11:36:37Z) - Pseudo-Labeling for Small Lesion Detection on Diabetic Retinopathy
Images [12.49381528673824]
糖尿病網膜症(英: Diabetic retinopathy、DR)は、世界の勤労者の視覚障害の主要な原因である。
糖尿病患者の約300~400万人は、DRのために視力を失います。
色眼底画像によるDRの診断は、そのような問題を緩和するための一般的なアプローチである。
論文 参考訳(メタデータ) (2020-03-26T17:13:48Z) - ElixirNet: Relation-aware Network Architecture Adaptation for Medical
Lesion Detection [90.13718478362337]
本稿では,1)TruncatedRPNが正負値と負値のバランスをとること,2)Auto-lesion Blockが自動的に医療画像にカスタマイズされ,地域提案間の関係認識操作が組み込まれること,3)Relation Transferモジュールが意味的関係を組み込むこと,の3つのコンポーネントを含む新しいElixirNetを紹介した。
DeepLesionとKits19の実験では、ElixirNetの有効性が証明され、パラメータが少なくてFPNよりも感度と精度が向上した。
論文 参考訳(メタデータ) (2020-03-03T05:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。