論文の概要: Frontier AI Regulation: Managing Emerging Risks to Public Safety
- arxiv url: http://arxiv.org/abs/2307.03718v1
- Date: Thu, 6 Jul 2023 17:03:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-10 11:52:51.759582
- Title: Frontier AI Regulation: Managing Emerging Risks to Public Safety
- Title(参考訳): フロンティアai規制 - 公共安全に対する新たなリスク管理
- Authors: Markus Anderljung, Joslyn Barnhart, Jade Leung, Anton Korinek, Cullen
O'Keefe, Jess Whittlestone, Shahar Avin, Miles Brundage, Justin Bullock,
Duncan Cass-Beggs, Ben Chang, Tantum Collins, Tim Fist, Gillian Hadfield,
Alan Hayes, Lewis Ho, Sara Hooker, Eric Horvitz, Noam Kolt, Jonas Schuett,
Yonadav Shavit, Divya Siddarth, Robert Trager, Kevin Wolf
- Abstract要約: 脆弱なAI」モデルは、公共の安全に深刻なリスクをもたらすのに十分な危険能力を持つ可能性がある。
業界の自己規制は重要な第一歩です。
安全基準の最初のセットを提案する。
- 参考スコア(独自算出の注目度): 12.365355508520885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advanced AI models hold the promise of tremendous benefits for humanity, but
society needs to proactively manage the accompanying risks. In this paper, we
focus on what we term "frontier AI" models: highly capable foundation models
that could possess dangerous capabilities sufficient to pose severe risks to
public safety. Frontier AI models pose a distinct regulatory challenge:
dangerous capabilities can arise unexpectedly; it is difficult to robustly
prevent a deployed model from being misused; and, it is difficult to stop a
model's capabilities from proliferating broadly. To address these challenges,
at least three building blocks for the regulation of frontier models are
needed: (1) standard-setting processes to identify appropriate requirements for
frontier AI developers, (2) registration and reporting requirements to provide
regulators with visibility into frontier AI development processes, and (3)
mechanisms to ensure compliance with safety standards for the development and
deployment of frontier AI models. Industry self-regulation is an important
first step. However, wider societal discussions and government intervention
will be needed to create standards and to ensure compliance with them. We
consider several options to this end, including granting enforcement powers to
supervisory authorities and licensure regimes for frontier AI models. Finally,
we propose an initial set of safety standards. These include conducting
pre-deployment risk assessments; external scrutiny of model behavior; using
risk assessments to inform deployment decisions; and monitoring and responding
to new information about model capabilities and uses post-deployment. We hope
this discussion contributes to the broader conversation on how to balance
public safety risks and innovation benefits from advances at the frontier of AI
development.
- Abstract(参考訳): 高度なAIモデルは人類にとって大きな利益をもたらすと約束しているが、社会はそれに伴うリスクを積極的に管理する必要がある。
本稿では,公共の安全に重大なリスクをもたらすのに十分な危険能力を有するような,高度な能力を持つ基盤モデルについて述べる。
危険な能力が予期せず出現する可能性があり、デプロイされたモデルが誤用されることを堅牢に防止することは困難であり、モデルの能力が広範囲に普及することを止めるのは難しい。
これらの課題に対処するには、(1)フロンティアAI開発者の適切な要件を特定するための標準設定プロセス、(2)フロンティアAI開発プロセスの可視性を提供するための規制当局の登録および報告要件、(3)フロンティアAIモデルの開発と展開のための安全基準の遵守を保証するメカニズムの3つが必要である。
業界の自己規制は重要な第一歩です。
しかし、より広範な社会的な議論と政府の介入は、標準の作成とコンプライアンスの確保のために必要となる。
我々は、規制当局への執行権限の付与やフロンティアaiモデルのライセンス制度など、この目的へのいくつかの選択肢を検討します。
最後に,安全基準の第一セットを提案する。
これには、デプロイ前のリスクアセスメントの実行、モデルの振る舞いの外部的検査、デプロイメント決定にリスクアセスメントを使用すること、モデルの能力とデプロイ後の使用に関する新しい情報に関する監視と応答が含まれる。
この議論が、ai開発のフロンティアにおける公衆安全のリスクとイノベーションのメリットのバランスのとり方に関する幅広い議論に貢献できることを願っている。
関連論文リスト
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Auction-Based Regulation for Artificial Intelligence [28.86995747151915]
本稿では,AIの安全性を規制するオークションベースの規制機構を提案する。
我々は、各参加エージェントの最善の戦略は、所定の最小限の安全閾値よりも安全なモデルを送ることであることを確実に保証する。
その結果,我々の規制オークションは,安全率と参加率を20%,参加率を15%向上させることがわかった。
論文 参考訳(メタデータ) (2024-10-02T17:57:02Z) - From Principles to Rules: A Regulatory Approach for Frontier AI [2.1764247401772705]
レギュレータは、フロンティアAI開発者に安全対策を適用するよう要求する。
要件は、ハイレベルな原則や特定のルールとして定式化できる。
これらの規制アプローチは「原則ベース」および「ルールベース」規制と呼ばれ、補完的な強みと弱みを持っている。
論文 参考訳(メタデータ) (2024-07-10T01:45:15Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Generative AI(Gen AI)の応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の変化の可能性は、この技術の潜在的なリスクについて活発に議論を巻き起こし、より厳格な規制を要求した。
この規制は、オープンソースの生成AIの誕生する分野を危険にさらす可能性がある。
論文 参考訳(メタデータ) (2024-05-14T13:37:36Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - A Safe Harbor for AI Evaluation and Red Teaming [124.89885800509505]
一部の研究者は、そのような研究の実施や研究成果の公表が、アカウント停止や法的報復につながることを恐れている。
我々は、主要なAI開発者が法的、技術的に安全な港を提供することを約束することを提案します。
これらのコミットメントは、ジェネレーティブAIのリスクに取り組むための、より包括的で意図しないコミュニティ努力への必要なステップである、と私たちは信じています。
論文 参考訳(メタデータ) (2024-03-07T20:55:08Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
AIの開発と規制は、重要な段階に達したようだ。
一部の専門家は、GPT-4よりも強力なAIシステムのトレーニングに関するモラトリアムを求めている。
本稿では、最も先進的な法的提案である欧州連合のAI法について分析する。
論文 参考訳(メタデータ) (2023-11-03T12:51:37Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Oversight for Frontier AI through a Know-Your-Customer Scheme for
Compute Providers [0.8547032097715571]
Know-Your-Customer (KYC) は、銀行部門がクライアントの識別と検証のために開発した標準である。
KYCは、既存の輸出管理におけるフロンティアAI開発とクローズループの監視を強化するメカニズムを提供するかもしれない。
AIチップの購入を制限する戦略とは異なり、計算へのデジタルアクセスを規制することは、より正確な制御を提供する。
論文 参考訳(メタデータ) (2023-10-20T16:17:29Z) - Deployment Corrections: An incident response framework for frontier AI
models [0.0]
本稿では,デプロイ前リスク管理が不十分な場合の緊急計画について検討する。
危険な機能に対応するためにAI開発者が使用できるデプロイメント修正ツールキットについて説明する。
私たちは、フロンティアAI開発者、標準設定組織、そして規制当局が協力して標準化された業界全体のアプローチを定義することを推奨します。
論文 参考訳(メタデータ) (2023-09-30T10:07:39Z) - Dual Governance: The intersection of centralized regulation and
crowdsourced safety mechanisms for Generative AI [1.2691047660244335]
Generative Artificial Intelligence(AI)は、特に消費者向け、オープンエンド、テキスト、画像生成モデルという形で、最近主流に採用されている。
創造的なAIが人間の創造性と生活を駆逐する可能性もまた、厳しい監視下にある。
政府によるAIを統制するための既存の規制と提案は、十分な明確さや統一性を持たないような批判に直面している。
クラウドソースによる安全ツールとメカニズムによる分散保護は、潜在的な代替手段である。
論文 参考訳(メタデータ) (2023-08-02T23:25:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。