論文の概要: Personalized Resource Allocation in Wireless Networks: An AI-Enabled and
Big Data-Driven Multi-Objective Optimization
- arxiv url: http://arxiv.org/abs/2307.03867v1
- Date: Sat, 8 Jul 2023 00:26:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 16:57:30.339579
- Title: Personalized Resource Allocation in Wireless Networks: An AI-Enabled and
Big Data-Driven Multi-Objective Optimization
- Title(参考訳): 無線ネットワークにおけるパーソナライズドリソース割り当て:ai対応およびビッグデータ駆動多目的最適化
- Authors: Rawan Alkurd, Ibrahim Abualhaol, Halim Yanikomeroglu
- Abstract要約: AI(Artificial Intelligence)は、無線ネットワークの設計と最適化に使用される。
AIの将来の主な応用の1つは、多くのユースケースに対してユーザーレベルのパーソナライズを可能にすることである。
本稿で提唱されるパーソナライズ技術は,ネットワークリソースの不足をマイクロマネジメントするために設計された,インテリジェントなビッグデータ駆動層によって支えられている。
- 参考スコア(独自算出の注目度): 22.77447144331876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The design and optimization of wireless networks have mostly been based on
strong mathematical and theoretical modeling. Nonetheless, as novel
applications emerge in the era of 5G and beyond, unprecedented levels of
complexity will be encountered in the design and optimization of the network.
As a result, the use of Artificial Intelligence (AI) is envisioned for wireless
network design and optimization due to the flexibility and adaptability it
offers in solving extremely complex problems in real-time. One of the main
future applications of AI is enabling user-level personalization for numerous
use cases. AI will revolutionize the way we interact with computers in which
computers will be able to sense commands and emotions from humans in a
non-intrusive manner, making the entire process transparent to users. By
leveraging this capability, and accelerated by the advances in computing
technologies, wireless networks can be redesigned to enable the personalization
of network services to the user level in real-time. While current wireless
networks are being optimized to achieve a predefined set of quality
requirements, the personalization technology advocated in this article is
supported by an intelligent big data-driven layer designed to micro-manage the
scarce network resources. This layer provides the intelligence required to
decide the necessary service quality that achieves the target satisfaction
level for each user. Due to its dynamic and flexible design, personalized
networks are expected to achieve unprecedented improvements in optimizing two
contradicting objectives in wireless networks: saving resources and improving
user satisfaction levels.
- Abstract(参考訳): 無線ネットワークの設計と最適化は、主に強力な数学的および理論的モデリングに基づいている。
それでも、5G以降の時代に新しいアプリケーションが出現すると、ネットワークの設計と最適化において、前例のないレベルの複雑さが生じることになる。
結果として、非常に複雑な問題をリアルタイムに解決できる柔軟性と適応性のために、ワイヤレスネットワークの設計と最適化のために人工知能(ai)の使用が想定されている。
aiの主な将来の応用の1つは、多くのユースケースでユーザーレベルのパーソナライズを可能にすることである。
aiは、コンピュータが人間から命令や感情を非インタラクティブな方法で感知し、プロセス全体をユーザに透明にするコンピュータとの対話方法に革命をもたらすだろう。
この機能を活用し、コンピューティング技術の進歩により、無線ネットワークを再設計し、ネットワークサービスのパーソナライズをリアルタイムに行えるようにすることができる。
現在の無線ネットワークは、予め定義された品質要件を満たすために最適化されているが、この論文で提唱されるパーソナライズ技術は、不足するネットワークリソースをマイクロマネジメントするために設計されたインテリジェントなビッグデータ駆動層によって支えられている。
このレイヤは、各ユーザの満足度レベルを達成するために必要なサービス品質を決定するために必要なインテリジェンスを提供する。
動的で柔軟な設計のため、パーソナライズされたネットワークは、リソースの節約とユーザ満足度の向上という2つの矛盾する目標を最適化することで、前例のない改善が期待されている。
関連論文リスト
- DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
本稿では、無線通信ネットワークの異なる状態変化に対応するために、カスタマイズされた無線ネットワークインテント(WNI-G)モデルを提案する。
大規模シミュレーションにより、動的通信システムにおけるスペクトル効率と従来のDRLモデルの変動の安定性が向上する。
論文 参考訳(メタデータ) (2024-10-18T14:04:38Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
フェデレートドラーニング(FL)は、学習効率を改善し、AIGCのプライバシー保護を達成するために利用することができる。
我々は,AIGCの強化を目的としたFLベースの技術を提案し,ユーザが多様でパーソナライズされた高品質なコンテンツを作成できるようにすることを目的とする。
論文 参考訳(メタデータ) (2023-07-14T04:13:11Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
エッジ人工知能(Edge AI)は、コネクテッドインテリジェンスを実現するための有望なソリューションである。
この記事では、ユーザのさまざまな要件を満たすために自動的に組織化し、適応し、最適化する、自律的なエッジAIシステムのビジョンを示す。
論文 参考訳(メタデータ) (2023-07-06T05:16:55Z) - Big-data-driven and AI-based framework to enable personalization in
wireless networks [20.26379197206863]
無線ネットワークにパーソナライズを統合するためのビッグデータ駆動型AIベースのパーソナライズフレームワークを提案する。
各ユーザの実際の要件とコンテキストに基づいて、マルチオブジェクトの定式化により、ネットワークは、提供されたユーザの満足度レベルを同時に管理し、最適化することができる。
論文 参考訳(メタデータ) (2023-06-08T02:30:55Z) - Optimization Design for Federated Learning in Heterogeneous 6G Networks [27.273745760946962]
フェデレーテッド・ラーニング(FL)は、6GネットワークでユビキタスAIを実現するための重要な実現手段として期待されている。
6Gネットワークにおける有効かつ効率的なFL実装には、いくつかのシステムおよび統計的不均一性の課題がある。
本稿では,これらの課題に効果的に対処できる最適化手法について検討する。
論文 参考訳(メタデータ) (2023-03-15T02:18:21Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
無線エッジネットワークでは、不正に生成されたコンテンツの送信はネットワークリソースを不要に消費する可能性がある。
我々は、AIGC-as-a-serviceの概念を示し、エッジネットワークにAをデプロイする際の課題について議論する。
最適なASP選択のための深層強化学習可能なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-09T09:30:23Z) - AI in 6G: Energy-Efficient Distributed Machine Learning for Multilayer
Heterogeneous Networks [7.318997639507269]
本稿では,ネットワーク層とエンティティにまたがるさまざまな機械学習手法に関連するタスクを分散する,階層ベースの新しいHetNetアーキテクチャを提案する。
このようなHetNetは、複数のアクセス方式と、エネルギー効率を高めるためのデバイス間通信(D2D)を備えている。
論文 参考訳(メタデータ) (2022-06-04T22:03:19Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
Reconfigurable Intelligent Surfaces(RIS)の新たな技術は、スマート無線環境の実現手段として準備されている。
RISは、無線媒体上の電磁信号の伝搬を動的に制御するための、高度にスケーラブルで低コストで、ハードウェア効率が高く、ほぼエネルギーニュートラルなソリューションを提供する。
このような再構成可能な無線環境におけるRISの密配置に関する大きな課題の1つは、複数の準曲面の効率的な構成である。
論文 参考訳(メタデータ) (2022-05-08T06:21:33Z) - Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and
Applications [39.223546118441476]
6Gはワイヤレスの進化を「コネクテッドモノ」から「コネクテッドインテリジェンス」に変革する
ディープラーニングとビッグデータ分析に基づくAIシステムは、膨大な計算と通信資源を必要とする。
エッジAIは、センサー、通信、計算、インテリジェンスをシームレスに統合する6Gの破壊的技術として際立っている。
論文 参考訳(メタデータ) (2021-11-24T11:47:16Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
本稿では,ユーザ要求の変化に応じて,ネットワーク内の各セルの構成パラメータを自動的に調整するポリシの学習方法について検討する。
私たちのソリューションは、オフライン学習のための既存の方法を組み合わせて、この文脈で生じる重要な課題を克服する原則的な方法でそれらを適応します。
論文 参考訳(メタデータ) (2021-11-11T11:31:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。