論文の概要: Feature selection simultaneously preserving both class and cluster
structures
- arxiv url: http://arxiv.org/abs/2307.03902v1
- Date: Sat, 8 Jul 2023 04:49:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 16:47:45.381325
- Title: Feature selection simultaneously preserving both class and cluster
structures
- Title(参考訳): クラス構造とクラスタ構造を同時に保存する特徴選択
- Authors: Suchismita Das and Nikhil R. Pal
- Abstract要約: 本稿では,クラス識別と構造保存の両方を統合的に重視するニューラルネットワークに基づく特徴選択手法を提案する。
実験の結果から,提案した特徴/帯域選択により,分類とクラスタリングの両方に適する特徴のサブセットを選択できると主張する。
- 参考スコア(独自算出の注目度): 5.5612170847190665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When a data set has significant differences in its class and cluster
structure, selecting features aiming only at the discrimination of classes
would lead to poor clustering performance, and similarly, feature selection
aiming only at preserving cluster structures would lead to poor classification
performance. To the best of our knowledge, a feature selection method that
simultaneously considers class discrimination and cluster structure
preservation is not available in the literature. In this paper, we have tried
to bridge this gap by proposing a neural network-based feature selection method
that focuses both on class discrimination and structure preservation in an
integrated manner. In addition to assessing typical classification problems, we
have investigated its effectiveness on band selection in hyperspectral images.
Based on the results of the experiments, we may claim that the proposed
feature/band selection can select a subset of features that is good for both
classification and clustering.
- Abstract(参考訳): データセットがクラス構造とクラスタ構造に有意な差異がある場合、クラスを識別することだけを目的とした機能を選択するとクラスタリング性能が低下し、同じように、クラスタ構造のみを保存することを目的とした機能選択では、分類性能が低下する。
この知識を最大限に活用するには,クラス識別とクラスタ構造保存を同時に考慮した特徴選択手法は文献にない。
本稿では,クラス識別と構造保存の両方を統合的に重視するニューラルネットワークに基づく特徴選択手法を提案することにより,このギャップを埋める試みを行った。
典型的分類問題の評価に加えて,超スペクトル画像における帯域選択の有効性について検討した。
実験の結果から,提案した特徴/帯域選択により,分類とクラスタリングの両方に優れた特徴のサブセットを選択できると主張する。
関連論文リスト
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
オープンセットのシナリオでは、ラベルなしデータセットには、イン・ディストリビューション(ID)クラスとアウト・オブ・ディストリビューション(OOD)クラスの両方が含まれている。
このような設定で半教師付き検出器を適用すると、OODクラスをIDクラスとして誤分類する可能性がある。
我々は、CFL-Detector(Collaborative Feature-Logits Detector)と呼ばれるシンプルで効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-11-20T02:57:35Z) - Greedy feature selection: Classifier-dependent feature selection via
greedy methods [2.4374097382908477]
本研究の目的は, グリージーな特徴選択に追随する特徴選択と呼ばれる, 分類タスクにおける特徴ランク付けのための新しいアプローチを導入することである。
このようなスキームの利点は、Vapnik-Chervonenkis(VC)次元やカーネルアライメントといったモデルキャパシティインジケータの観点から理論的に研究されている。
論文 参考訳(メタデータ) (2024-03-08T08:12:05Z) - Using Decision Trees for Interpretable Supervised Clustering [0.0]
教師付きクラスタリングは、高い確率密度でラベル付きデータのクラスタを形成することを目的としている。
特に、特定のクラスのデータのクラスタを見つけ、包括的なルールのセットでクラスタを記述することに興味があります。
論文 参考訳(メタデータ) (2023-07-16T17:12:45Z) - DiGeo: Discriminative Geometry-Aware Learning for Generalized Few-Shot
Object Detection [39.937724871284665]
汎用的な少ショットオブジェクト検出は、豊富なアノテーションと限られたトレーニングデータを持つ新しいクラスで、両方のベースクラス上で正確な検出を実現することを目的としている。
既存のアプローチは、ベースクラスのパフォーマンスを犠牲にして、数ショットの一般化を促進する。
クラス間分離とクラス内コンパクト性の幾何学的特徴を学習するための新しいトレーニングフレームワークDiGeoを提案する。
論文 参考訳(メタデータ) (2023-03-16T22:37:09Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
本稿では,アンサンブル分類とエビデンス理論を用いた新しい検出手法を提案する。
固体アンサンブル分類器を構築するためのプール選択戦略が提示される。
我々は異常検出手法の不確実性を利用する。
論文 参考訳(メタデータ) (2022-12-23T00:50:41Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
完全ラベル付きデータからの学習は、Person Re-IdentificationやText Authorship Attributionなどのマルチメディアフォレスト問題において困難である。
近年の自己教師型学習法は,基礎となるクラスに意味的差異が有る場合に,完全ラベル付きデータを扱う際に有効であることが示されている。
本研究では,異なるクラスからのサンプルが顕著に多様性を持っていない場合でも,ラベルのないデータから学習できるようにすることにより,個人再認識とテキストオーサシップの属性に対処する戦略を提案する。
論文 参考訳(メタデータ) (2022-02-07T13:08:11Z) - CAC: A Clustering Based Framework for Classification [20.372627144885158]
分類アウェアクラスタリング(CAC)と呼ばれるシンプルで効率的で汎用的なフレームワークを設計する。
本実験は,クラスタリングと分類を併用した従来の手法よりもCACの有効性を示すものである。
論文 参考訳(メタデータ) (2021-02-23T18:59:39Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
我々は m 個の U 集合を $mge2$ で二進分類する新しい手法を提案する。
我々のキーとなる考え方は、サロゲート集合分類(SSC)と呼ばれる補助的分類タスクを考えることである。
論文 参考訳(メタデータ) (2021-02-01T07:36:38Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Learning Class Regularized Features for Action Recognition [68.90994813947405]
本稿では,階層活性化のクラスベース正規化を行うクラス正規化手法を提案する。
動作認識に最先端CNNアーキテクチャのクラス正規化ブロックを用いることで,Kineetics,UCF-101,HMDB-51データセットにおいて,それぞれ1.8%,1.2%,1.4%の体系的改善が得られた。
論文 参考訳(メタデータ) (2020-02-07T07:27:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。