TractGeoNet: A geometric deep learning framework for pointwise analysis
of tract microstructure to predict language assessment performance
- URL: http://arxiv.org/abs/2307.03982v1
- Date: Sat, 8 Jul 2023 14:10:37 GMT
- Title: TractGeoNet: A geometric deep learning framework for pointwise analysis
of tract microstructure to predict language assessment performance
- Authors: Yuqian Chen, Leo R. Zekelman, Chaoyi Zhang, Tengfei Xue, Yang Song,
Nikos Makris, Yogesh Rathi, Alexandra J. Golby, Weidong Cai, Fan Zhang,
Lauren J. O'Donnell
- Abstract summary: We propose a geometric deep-learning-based framework, TractGeoNet, for performing regression using diffusion magnetic resonance imaging (dMRI) tractography.
To improve regression performance, we propose a novel loss function, the Paired-Siamese Regression loss.
We evaluate the effectiveness of the proposed method by predicting individual performance on two neuropsychological assessments of language.
- Score: 66.43360974979386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a geometric deep-learning-based framework, TractGeoNet, for
performing regression using diffusion magnetic resonance imaging (dMRI)
tractography and associated pointwise tissue microstructure measurements. By
employing a point cloud representation, TractGeoNet can directly utilize
pointwise tissue microstructure and positional information from all points
within a fiber tract. To improve regression performance, we propose a novel
loss function, the Paired-Siamese Regression loss, which encourages the model
to focus on accurately predicting the relative differences between regression
label scores rather than just their absolute values. In addition, we propose a
Critical Region Localization algorithm to identify highly predictive anatomical
regions within the white matter fiber tracts for the regression task. We
evaluate the effectiveness of the proposed method by predicting individual
performance on two neuropsychological assessments of language using a dataset
of 20 association white matter fiber tracts from 806 subjects from the Human
Connectome Project. The results demonstrate superior prediction performance of
TractGeoNet compared to several popular regression models. Of the twenty tracts
studied, we find that the left arcuate fasciculus tract is the most highly
predictive of the two studied language performance assessments. The localized
critical regions are widespread and distributed across both hemispheres and all
cerebral lobes, including areas of the brain considered important for language
function such as superior and anterior temporal regions, pars opercularis, and
precentral gyrus. Overall, TractGeoNet demonstrates the potential of geometric
deep learning to enhance the study of the brain's white matter fiber tracts and
to relate their structure to human traits such as language performance.
Related papers
- On Discprecncies between Perturbation Evaluations of Graph Neural
Network Attributions [49.8110352174327]
We assess attribution methods from a perspective not previously explored in the graph domain: retraining.
The core idea is to retrain the network on important (or not important) relationships as identified by the attributions.
We run our analysis on four state-of-the-art GNN attribution methods and five synthetic and real-world graph classification datasets.
arXiv Detail & Related papers (2024-01-01T02:03:35Z) - Graph Neural Operators for Classification of Spatial Transcriptomics
Data [1.408706290287121]
We propose a study incorporating various graph neural network approaches to validate the efficacy of applying neural operators towards prediction of brain regions in mouse brain tissue samples.
We were able to achieve an F1 score of nearly 72% for the graph neural operator approach which outperformed all baseline and other graph network approaches.
arXiv Detail & Related papers (2023-02-01T18:32:06Z) - White Matter Tracts are Point Clouds: Neuropsychological Score
Prediction and Critical Region Localization via Geometric Deep Learning [68.5548609642999]
We propose a deep-learning-based framework for neuropsychological score prediction using white matter tract data.
We represent the arcuate fasciculus (AF) as a point cloud with microstructure measurements at each point.
We improve prediction performance with the proposed Paired-Siamese Loss that utilizes information about differences between continuous neuropsychological scores.
arXiv Detail & Related papers (2022-07-06T02:03:28Z) - A Local Geometric Interpretation of Feature Extraction in Deep
Feedforward Neural Networks [13.159994710917022]
In this paper, we present a local geometric analysis to interpret how deep feedforward neural networks extract low-dimensional features from high-dimensional data.
Our study shows that, in a local geometric region, the optimal weight in one layer of the neural network and the optimal feature generated by the previous layer comprise a low-rank approximation of a matrix that is determined by the Bayes action of this layer.
arXiv Detail & Related papers (2022-02-09T18:50:00Z) - With Greater Distance Comes Worse Performance: On the Perspective of
Layer Utilization and Model Generalization [3.6321778403619285]
Generalization of deep neural networks remains one of the main open problems in machine learning.
Early layers generally learn representations relevant to performance on both training data and testing data.
Deeper layers only minimize training risks and fail to generalize well with testing or mislabeled data.
arXiv Detail & Related papers (2022-01-28T05:26:32Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Expressivity of Deep Neural Networks [2.7909470193274593]
In this review paper, we give a comprehensive overview of the large variety of approximation results for neural networks.
While the mainbody of existing results is for general feedforward architectures, we also depict approximation results for convolutional, residual and recurrent neural networks.
arXiv Detail & Related papers (2020-07-09T13:08:01Z) - The efficiency of deep learning algorithms for detecting anatomical
reference points on radiological images of the head profile [55.41644538483948]
A U-Net neural network allows performing the detection of anatomical reference points more accurately than a fully convolutional neural network.
The results of the detection of anatomical reference points by the U-Net neural network are closer to the average results of the detection of reference points by a group of orthodontists.
arXiv Detail & Related papers (2020-05-25T13:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.