DEDUCE: Multi-head attention decoupled contrastive learning to discover cancer subtypes based on multi-omics data
- URL: http://arxiv.org/abs/2307.04075v3
- Date: Sat, 26 Oct 2024 07:43:46 GMT
- Title: DEDUCE: Multi-head attention decoupled contrastive learning to discover cancer subtypes based on multi-omics data
- Authors: Liangrui Pan, Xiang Wang, Qingchun Liang, Jiandong Shang, Wenjuan Liu, Liwen Xu, Shaoliang Peng,
- Abstract summary: We propose a model, named DEDUCE, for unsupervised contrastive learning to analyze multi-omics cancer data.
This model adopts a unsupervised SMAE that can deeply extract contextual features and long-range dependencies from multi-omics data.
Subtypes are clustered by calculating the similarity between samples in both the feature space and sample space of multi-omics data.
- Score: 7.049723871585993
- License:
- Abstract: Background and Objective: Given the high heterogeneity and clinical diversity of cancer, substantial variations exist in multi-omics data and clinical features across different cancer subtypes. Methods: We propose a model, named DEDUCE, based on a symmetric multi-head attention encoders (SMAE), for unsupervised contrastive learning to analyze multi-omics cancer data, with the aim of identifying and characterizing cancer subtypes. This model adopts a unsupervised SMAE that can deeply extract contextual features and long-range dependencies from multi-omics data, thereby mitigating the impact of noise. Importantly, DEDUCE introduces a subtype decoupled contrastive learning method based on a multi-head attention mechanism to simultaneously learn features from multi-omics data and perform clustering for identifying cancer subtypes. Subtypes are clustered by calculating the similarity between samples in both the feature space and sample space of multi-omics data. The fundamental concept involves decoupling various attributes of multi-omics data features and learning them as contrasting terms. A contrastive loss function is constructed to quantify the disparity between positive and negative examples, and the model minimizes this difference, thereby promoting the acquisition of enhanced feature representation. Results: The DEDUCE model undergoes extensive experiments on simulated multi-omics datasets, single-cell multi-omics datasets, and cancer multi-omics datasets, outperforming 10 deep learning models. The DEDUCE model outperforms state-of-the-art methods, and ablation experiments demonstrate the effectiveness of each module in the DEDUCE model. Finally, we applied the DEDUCE model to identify six cancer subtypes of AML.
Related papers
- Multi-omics data integration for early diagnosis of hepatocellular carcinoma (HCC) using machine learning [8.700808005009806]
We compare the performance of ensemble machine learning algorithms capable of late integration of multi-class data from different modalities.
Two boosted methods, PB-MVBoost and Adaboost with a soft vote were the overall best performing models.
arXiv Detail & Related papers (2024-09-20T09:38:02Z) - PACS: Prediction and analysis of cancer subtypes from multi-omics data
based on a multi-head attention mechanism model [2.275409158519155]
We propose a supervised multi-head attention mechanism model (SMA) to classify cancer subtypes successfully.
The attention mechanism and feature sharing module of the SMA model can successfully learn the global and local feature information of multi-omics data.
The SMA model achieves the highest accuracy, F1 macroscopic, F1 weighted, and accurate classification of cancer subtypes in simulated, single-cell, and cancer multiomics datasets.
arXiv Detail & Related papers (2023-08-21T03:54:21Z) - MoCLIM: Towards Accurate Cancer Subtyping via Multi-Omics Contrastive
Learning with Omics-Inference Modeling [9.900594964709116]
We develop MoCLIM, a representation learning framework for cancer subtyping.
We show that our approach significantly improves data fit and subtyping performance in fewer high-dimensional cancer instances.
Our framework incorporates various medical evaluations as the final component, providing high interpretability in medical analysis.
arXiv Detail & Related papers (2023-08-17T10:49:48Z) - Cancer Subtyping by Improved Transcriptomic Features Using Vector
Quantized Variational Autoencoder [10.835673227875615]
We propose Vector Quantized Variational AutoEncoder (VQ-VAE) to tackle the data issues and extract informative latent features that are crucial to the quality of subsequent clustering.
VQ-VAE does not impose strict assumptions and hence its latent features are better representations of the input, capable of yielding superior clustering performance with any mainstream clustering method.
arXiv Detail & Related papers (2022-07-20T09:47:53Z) - SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data
for Cancer Type Classification [4.992154875028543]
Integration and analysis of multi-omics data give us a broad view of tumours, which can improve clinical decision making.
SubOmiEmbed produces comparable results to the baseline OmiEmbed with a much smaller network and by using just a subset of the data.
This work can be improved to integrate mutation-based genomic data as well.
arXiv Detail & Related papers (2022-02-03T16:39:09Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.