Visible and infrared self-supervised fusion trained on a single example
- URL: http://arxiv.org/abs/2307.04100v2
- Date: Sat, 9 Mar 2024 08:16:14 GMT
- Title: Visible and infrared self-supervised fusion trained on a single example
- Authors: Nati Ofir and Jean-Christophe Nebel
- Abstract summary: Multispectral imaging is important task of image processing and computer vision.
Problem of visible (RGB) to Near Infrared (NIR) image fusion has become particularly timely.
Proposed approach fuses these two channels by training a Convolutional Neural Network by Self Supervised Learning (SSL) on a single example.
Experiments demonstrate that the proposed approach achieves similar or better qualitative and quantitative multispectral fusion results.
- Score: 1.1188842018827656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multispectral imaging is an important task of image processing and computer
vision, which is especially relevant to applications such as dehazing or object
detection. With the development of the RGBT (RGB & Thermal) sensor, the problem
of visible (RGB) to Near Infrared (NIR) image fusion has become particularly
timely. Indeed, while visible images see color, but suffer from noise, haze,
and clouds, the NIR channel captures a clearer picture. The proposed approach
fuses these two channels by training a Convolutional Neural Network by Self
Supervised Learning (SSL) on a single example. For each such pair, RGB and NIR,
the network is trained for seconds to deduce the final fusion. The SSL is based
on the comparison of the Structure of Similarity and Edge-Preservation losses,
where the labels for the SSL are the input channels themselves. This fusion
preserves the relevant detail of each spectral channel without relying on a
heavy training process. Experiments demonstrate that the proposed approach
achieves similar or better qualitative and quantitative multispectral fusion
results than other state-of-the-art methods that do not rely on heavy training
and/or large datasets.
Related papers
- Contourlet Refinement Gate Framework for Thermal Spectrum Distribution Regularized Infrared Image Super-Resolution [54.293362972473595]
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts.
Current approaches to address SR tasks are either dedicated to extracting RGB image features or assuming similar degradation patterns.
We propose a Contourlet refinement gate framework to restore infrared modal-specific features while preserving spectral distribution fidelity.
arXiv Detail & Related papers (2024-11-19T14:24:03Z) - Residual Spatial Fusion Network for RGB-Thermal Semantic Segmentation [19.41334573257174]
Traditional methods mostly use RGB images which are heavily affected by lighting conditions, eg, darkness.
Recent studies show thermal images are robust to the night scenario as a compensating modality for segmentation.
This work proposes a Residual Spatial Fusion Network (RSFNet) for RGB-T semantic segmentation.
arXiv Detail & Related papers (2023-06-17T14:28:08Z) - Dif-Fusion: Towards High Color Fidelity in Infrared and Visible Image
Fusion with Diffusion Models [54.952979335638204]
We propose a novel method with diffusion models, termed as Dif-Fusion, to generate the distribution of the multi-channel input data.
Our method is more effective than other state-of-the-art image fusion methods, especially in color fidelity.
arXiv Detail & Related papers (2023-01-19T13:37:19Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature
Ensemble for Multi-modality Image Fusion [72.8898811120795]
We propose a coupled contrastive learning network, dubbed CoCoNet, to realize infrared and visible image fusion.
Our method achieves state-of-the-art (SOTA) performance under both subjective and objective evaluation.
arXiv Detail & Related papers (2022-11-20T12:02:07Z) - Unsupervised Misaligned Infrared and Visible Image Fusion via
Cross-Modality Image Generation and Registration [59.02821429555375]
We present a robust cross-modality generation-registration paradigm for unsupervised misaligned infrared and visible image fusion.
To better fuse the registered infrared images and visible images, we present a feature Interaction Fusion Module (IFM)
arXiv Detail & Related papers (2022-05-24T07:51:57Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - Multispectral image fusion by super pixel statistics [1.4685355149711299]
I address the task of visible color RGB to Near-Infrared (NIR) fusion.
The RGB image captures the color of the scene while the NIR captures details and sees beyond haze and clouds.
The proposed method is designed to produce a fusion that contains both advantages of each spectra.
arXiv Detail & Related papers (2021-12-21T16:19:10Z) - Generation of the NIR spectral Band for Satellite Images with
Convolutional Neural Networks [0.0]
Deep neural networks allow generating artificial spectral information, such as for the image colorization problem.
We study the generative adversarial network (GAN) approach in the task of the NIR band generation using just RGB channels of high-resolution satellite imagery.
arXiv Detail & Related papers (2021-06-13T15:14:57Z) - SFANet: A Spectrum-aware Feature Augmentation Network for
Visible-Infrared Person Re-Identification [12.566284647658053]
We propose a novel spectrum-aware feature augementation network named SFANet for cross-modality matching problem.
Learning with grayscale-spectrum images, our model can apparently reduce modality discrepancy and detect inner structure relations.
In feature-level, we improve the conventional two-stream network through balancing the number of specific and sharable convolutional blocks.
arXiv Detail & Related papers (2021-02-24T08:57:32Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
We use Self-Supervised Representation Learning to design two pretext tasks: the cross-modal auto-encoder and the depth-contour estimation.
Our pretext tasks require only a few and un RGB-D datasets to perform pre-training, which make the network capture rich semantic contexts.
For the inherent problem of cross-modal fusion in RGB-D SOD, we propose a multi-path fusion module.
arXiv Detail & Related papers (2021-01-29T09:16:06Z) - A Dual-branch Network for Infrared and Visible Image Fusion [20.15854042473049]
We propose a new method based on dense blocks and GANs.
We directly insert the input image-visible light image in each layer of the entire network.
Our experiments show that the fused images obtained by our approach achieve good score based on multiple evaluation indicators.
arXiv Detail & Related papers (2021-01-24T04:18:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.