Visible and Infrared Image Fusion Using Encoder-Decoder Network
- URL: http://arxiv.org/abs/2412.08073v1
- Date: Wed, 11 Dec 2024 03:42:31 GMT
- Title: Visible and Infrared Image Fusion Using Encoder-Decoder Network
- Authors: Ferhat Can Ataman, Gözde Bozdaği Akar,
- Abstract summary: We present a novel learning-based solution to image fusion problem focusing on infrared and visible spectrum images.
The proposed solution utilizes only convolution and pooling layers together with a loss function using no-reference quality metrics.
- Score: 0.0
- License:
- Abstract: The aim of multispectral image fusion is to combine object or scene features of images with different spectral characteristics to increase the perceptual quality. In this paper, we present a novel learning-based solution to image fusion problem focusing on infrared and visible spectrum images. The proposed solution utilizes only convolution and pooling layers together with a loss function using no-reference quality metrics. The analysis is performed qualitatively and quantitatively on various datasets. The results show better performance than state-of-the-art methods. Also, the size of our network enables real-time performance on embedded devices. Project codes can be found at \url{https://github.com/ferhatcan/pyFusionSR}.
Related papers
- DAF-Net: A Dual-Branch Feature Decomposition Fusion Network with Domain Adaptive for Infrared and Visible Image Fusion [21.64382683858586]
Infrared and visible image fusion aims to combine complementary information from both modalities to provide a more comprehensive scene understanding.
We propose a dual-branch feature decomposition fusion network (DAF-Net) with Maximum domain adaptive.
By incorporating MK-MMD, the DAF-Net effectively aligns the latent feature spaces of visible and infrared images, thereby improving the quality of the fused images.
arXiv Detail & Related papers (2024-09-18T02:14:08Z) - Beyond Night Visibility: Adaptive Multi-Scale Fusion of Infrared and
Visible Images [49.75771095302775]
We propose an Adaptive Multi-scale Fusion network (AMFusion) with infrared and visible images.
First, we separately fuse spatial and semantic features from infrared and visible images, where the former are used for the adjustment of light distribution.
Second, we utilize detection features extracted by a pre-trained backbone that guide the fusion of semantic features.
Third, we propose a new illumination loss to constrain fusion image with normal light intensity.
arXiv Detail & Related papers (2024-03-02T03:52:07Z) - DePF: A Novel Fusion Approach based on Decomposition Pooling for
Infrared and Visible Images [7.11574718614606]
A novel fusion network based on the decomposition pooling (de-pooling) manner is proposed, termed as DePF.
A de-pooling based encoder is designed to extract multi-scale image and detail features of source images at the same time.
The experimental results demonstrate that the proposed method exhibits superior fusion performance over the state-of-the-arts.
arXiv Detail & Related papers (2023-05-27T05:47:14Z) - LRRNet: A Novel Representation Learning Guided Fusion Network for
Infrared and Visible Images [98.36300655482196]
We formulate the fusion task mathematically, and establish a connection between its optimal solution and the network architecture that can implement it.
In particular we adopt a learnable representation approach to the fusion task, in which the construction of the fusion network architecture is guided by the optimisation algorithm producing the learnable model.
Based on this novel network architecture, an end-to-end lightweight fusion network is constructed to fuse infrared and visible light images.
arXiv Detail & Related papers (2023-04-11T12:11:23Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
We propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network.
We show that CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2022-11-26T02:40:28Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature Ensemble for Multi-modality Image Fusion [68.78897015832113]
We propose a coupled contrastive learning network, dubbed CoCoNet, to realize infrared and visible image fusion.
Our method achieves state-of-the-art (SOTA) performance under both subjective and objective evaluation.
arXiv Detail & Related papers (2022-11-20T12:02:07Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Multispectral Fusion for Object Detection with Cyclic Fuse-and-Refine
Blocks [3.6488662460683794]
We propose a new halfway feature fusion method for neural networks that leverages the complementary/consistency balance existing in multispectral features.
We evaluate the effectiveness of our fusion method on two challenging multispectral datasets for object detection.
arXiv Detail & Related papers (2020-09-26T18:39:05Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.