論文の概要: Predictive Coding For Animation-Based Video Compression
- arxiv url: http://arxiv.org/abs/2307.04187v1
- Date: Sun, 9 Jul 2023 14:40:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 14:59:57.891587
- Title: Predictive Coding For Animation-Based Video Compression
- Title(参考訳): 動画圧縮のための予測符号化
- Authors: Goluck Konuko, St\'ephane Lathuili\`ere and Giuseppe Valenzise
- Abstract要約: 本稿では,画像アニメーションを予測器として用いる予測符号化手法を提案し,実際の対象フレームに対する残差を符号化する。
実験の結果,HEVCビデオ標準に比べて70%以上,VVCに比べて30%以上,有意な上昇を示した。
- 参考スコア(独自算出の注目度): 13.161311799049978
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We address the problem of efficiently compressing video for conferencing-type
applications. We build on recent approaches based on image animation, which can
achieve good reconstruction quality at very low bitrate by representing face
motions with a compact set of sparse keypoints. However, these methods encode
video in a frame-by-frame fashion, i.e. each frame is reconstructed from a
reference frame, which limits the reconstruction quality when the bandwidth is
larger. Instead, we propose a predictive coding scheme which uses image
animation as a predictor, and codes the residual with respect to the actual
target frame. The residuals can be in turn coded in a predictive manner, thus
removing efficiently temporal dependencies. Our experiments indicate a
significant bitrate gain, in excess of 70% compared to the HEVC video standard
and over 30% compared to VVC, on a datasetof talking-head videos
- Abstract(参考訳): 会議型アプリケーションにおいて,映像を効率よく圧縮する問題に対処する。
画像アニメーションをベースとした近年のアプローチは, 粗いキーポイントの集合で顔の動きを表現することで, 非常に低ビットレートで良好な再構成品質を実現することができる。
しかし、これらの手法はフレームバイフレーム方式で映像をエンコードする、すなわち、各フレームは参照フレームから再構成されるため、帯域幅が大きくなると再構成品質が制限される。
そこで我々は,画像アニメーションを予測器として用いる予測符号化方式を提案し,実際の対象フレームに対する残差を符号化する。
残差は予測的な方法でコード化できるため、効率良く時間依存を取り除くことができる。
実験の結果, HEVCビデオ標準に比べて70%以上, VVCに比べて30%以上, 有意なビットレート増加が認められた。
関連論文リスト
- Accelerating Learned Video Compression via Low-Resolution Representation Learning [18.399027308582596]
低解像度表現学習に焦点を当てた学習ビデオ圧縮のための効率最適化フレームワークを提案する。
提案手法は,H.266参照ソフトウェアVTMの低遅延P構成と同等の性能を実現する。
論文 参考訳(メタデータ) (2024-07-23T12:02:57Z) - Blurry Video Compression: A Trade-off between Visual Enhancement and
Data Compression [65.8148169700705]
既存のビデオ圧縮(VC)手法は主に、ビデオ内の連続フレーム間の空間的および時間的冗長性を減らすことを目的としている。
これまでの研究は、インスタント(既知の)露光時間やシャッタースピードなどの特定の設定で取得されたビデオに対して、顕著な成果を上げてきた。
本研究では,シーン内のカメラ設定やダイナミックスによって,所定の映像がぼやけてしまうという一般的なシナリオにおいて,VCの問題に取り組む。
論文 参考訳(メタデータ) (2023-11-08T02:17:54Z) - Perceptual Quality Improvement in Videoconferencing using
Keyframes-based GAN [28.773037051085318]
本稿では,ビデオ会議における圧縮アーティファクト削減のための新しいGAN手法を提案する。
まず,圧縮および参照フレームからマルチスケールの特徴を抽出する。
そして、私たちのアーキテクチャは、顔のランドマークに従って、これらの特徴を段階的に組み合わせます。
論文 参考訳(メタデータ) (2023-11-07T16:38:23Z) - IBVC: Interpolation-driven B-frame Video Compression [68.18440522300536]
Bフレームビデオ圧縮は、双方向動作推定と動き補償(MEMC)符号化をミドルフレーム再構成に適用することを目的としている。
従来の学習アプローチでは、しばしば双方向の光フロー推定に依存するニューラルネットワークのPフレームコーデックをBフレームに直接拡張する。
これらの問題に対処するために,IBVC (Interpolation-B-frame Video Compression) という単純な構造を提案する。
論文 参考訳(メタデータ) (2023-09-25T02:45:51Z) - VNVC: A Versatile Neural Video Coding Framework for Efficient
Human-Machine Vision [59.632286735304156]
コード化された表現をピクセルに復号することなく直接拡張・解析することがより効率的である。
再構成と直接拡張/分析の両方をサポートするために,コンパクト表現の学習を目標とする汎用型ニューラルビデオ符号化(VNVC)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-19T03:04:57Z) - Compressing Video Calls using Synthetic Talking Heads [43.71577046989023]
本稿では,ヘッドビデオ圧縮のためのエンドツーエンドシステムを提案する。
提案アルゴリズムは,他の音声ヘッドビデオがアニメーションによって生成される間,ピボットフレームを断続的に送信する。
我々は、最先端の顔再現ネットワークを用いて、非ピボットフレームのキーポイントを検出し、それを受信機に送信する。
論文 参考訳(メタデータ) (2022-10-07T16:52:40Z) - Deep Contextual Video Compression [20.301569390401102]
本稿では,予測符号化から条件付き符号化へのパラダイムシフトを実現するための,深い文脈ビデオ圧縮フレームワークを提案する。
提案手法は従来のSOTA(State-of-theart)ディープビデオ圧縮法よりも大幅に優れる。
論文 参考訳(メタデータ) (2021-09-30T12:14:24Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
本稿では,フレーム間の条件エントロピーをモデル化することのみに焦点を当てた,非常にシンプルで効率的なビデオ圧縮フレームワークを提案する。
まず、画像遅延符号間のエントロピーをモデル化する単純なアーキテクチャが、他のニューラルビデオ圧縮やビデオコーデックと同等の競争力を持つことを示す。
次に、このアーキテクチャの上に新しい内部学習拡張を提案し、復号速度を抑えることなく10%の節約を実現した。
論文 参考訳(メタデータ) (2020-08-20T20:01:59Z) - M-LVC: Multiple Frames Prediction for Learned Video Compression [111.50760486258993]
低レイテンシシナリオのためのエンドツーエンドの学習ビデオ圧縮方式を提案する。
提案方式では, 移動ベクトル(MV)場を現在のフレームと前のフレームの間で計算する。
実験の結果,提案手法は,低遅延モードにおける既存の学習ビデオ圧縮法よりも優れていた。
論文 参考訳(メタデータ) (2020-04-21T20:42:02Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
本稿では,コンテンツ適応型・誤り伝搬対応型ビデオ圧縮システムを提案する。
本手法では, 複数フレームの圧縮性能を1フレームではなく複数フレームで考慮し, 共同学習手法を用いる。
従来の圧縮システムでは手作りのコーディングモードを使用する代わりに,オンラインエンコーダ更新方式をシステム内に設計する。
論文 参考訳(メタデータ) (2020-03-25T09:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。