論文の概要: Seismic Data Interpolation based on Denoising Diffusion Implicit Models
with Resampling
- arxiv url: http://arxiv.org/abs/2307.04226v1
- Date: Sun, 9 Jul 2023 16:37:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 14:50:26.707072
- Title: Seismic Data Interpolation based on Denoising Diffusion Implicit Models
with Resampling
- Title(参考訳): 再サンプリングを伴う拡散入射モデルに基づく地震データ補間
- Authors: Xiaoli Wei, Chunxia Zhang, Hongtao Wang, Chengli Tan, Deng Xiong,
Baisong Jiang, Jiangshe Zhang, Sang-Woon Kim
- Abstract要約: そこで本稿では,再サンプリングによる暗黙的拡散モデルを提案する。
モデル推論は、既知のトレースの条件付けである拡散暗黙モデルを利用して、拡散ステップの少ない高品質を実現する。
- 参考スコア(独自算出の注目度): 8.806557897730137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The incompleteness of the seismic data caused by missing traces along the
spatial extension is a common issue in seismic acquisition due to the existence
of obstacles and economic constraints, which severely impairs the imaging
quality of subsurface geological structures. Recently, deep learning-based
seismic interpolation methods have attained promising progress, while achieving
stable training of generative adversarial networks is not easy, and performance
degradation is usually notable if the missing patterns in the testing and
training do not match. In this paper, we propose a novel seismic denoising
diffusion implicit model with resampling. The model training is established on
the denoising diffusion probabilistic model, where U-Net is equipped with the
multi-head self-attention to match the noise in each step. The cosine noise
schedule, serving as the global noise configuration, promotes the high
utilization of known trace information by accelerating the passage of the
excessive noise stages. The model inference utilizes the denoising diffusion
implicit model, conditioning on the known traces, to enable high-quality
interpolation with fewer diffusion steps. To enhance the coherency between the
known traces and the missing traces within each reverse step, the inference
process integrates a resampling strategy to achieve an information recap on the
former interpolated traces. Extensive experiments conducted on synthetic and
field seismic data validate the superiority of our model and its robustness on
various missing patterns. In addition, uncertainty quantification and ablation
studies are also investigated.
- Abstract(参考訳): 空間拡張に伴う痕跡の欠如に起因する地震データの不完全性は,地下地質構造の撮像品質を著しく損なう障害や経済的な制約が存在するため,地震探査において一般的な問題である。
近年, 深層学習に基づく補間法が有望な進歩を遂げているが, 生成型逆ネットワークの安定な訓練は容易ではなく, テストやトレーニングの欠落パターンが一致しない場合, 性能劣化が顕著である。
そこで本稿では,再サンプリングによる暗黙的拡散モデルを提案する。
モデルトレーニングは、U-Netが各ステップのノイズにマッチするマルチヘッド自己アテンションを備えているデノナイジング拡散確率モデルに基づいて行われる。
グローバルノイズ構成としてのコサインノイズスケジュールは、過大なノイズステージの通過を加速することにより、既知のトレース情報の高利用を促進する。
モデル推論は、既知のトレースの条件付けである拡散暗黙モデルを利用して、拡散ステップの少ない高品質な補間を可能にする。
各逆ステップにおける既知のトレースと不足トレースとの一貫性を高めるために、推論プロセスは、再サンプリング戦略を統合し、以前の補間されたトレースに記録された情報を取得する。
合成およびフィールド地震探査データを用いた大規模実験により, モデルが優れていること, 各種の欠落パターンに対するロバスト性について検証した。
また不確かさの定量化とアブレーションの研究も行われている。
関連論文リスト
- On the Relation Between Linear Diffusion and Power Iteration [42.158089783398616]
相関機械として生成過程を研究する」
生成過程の早い段階で低周波が出現し, 固有値に依存する速度で, 偏極基底ベクトルが真のデータにより整合していることが示される。
このモデルにより、線形拡散モデルが、一般的な電力反復法と同様に、基礎データの先頭固有ベクトルに平均的に収束することを示すことができる。
論文 参考訳(メタデータ) (2024-10-16T07:33:12Z) - Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration [64.84134880709625]
拡散モデルを用いて,雑音空間を介して領域適応を行うことが可能であることを示す。
特に、補助的な条件入力が多段階の復調過程にどのように影響するかというユニークな性質を活用することにより、有意義な拡散損失を導出する。
拡散モデルにおけるチャネルシャッフル層や残留スワッピング型コントラスト学習などの重要な戦略を提案する。
論文 参考訳(メタデータ) (2024-06-26T17:40:30Z) - Inference Stage Denoising for Undersampled MRI Reconstruction [13.8086726938161]
磁気共鳴画像(MRI)データの再構成は、ディープラーニングによって肯定的な影響を受けている。
重要な課題は、トレーニングとテストデータ間の分散シフトへの一般化を改善することだ。
論文 参考訳(メタデータ) (2024-02-12T12:50:10Z) - Blue noise for diffusion models [50.99852321110366]
本稿では,画像内および画像間の相関雑音を考慮した拡散モデルを提案する。
我々のフレームワークは、勾配流を改善するために、1つのミニバッチ内に画像間の相関を導入することができる。
本手法を用いて,各種データセットの質的,定量的な評価を行う。
論文 参考訳(メタデータ) (2024-02-07T14:59:25Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) は、推論中に単純だが効果的なステップを付加したコンパクトネットワークである。
OMSは画像の忠実度を高め、トレーニングと推論の二分法を調和させ、元のモデルパラメータを保存する。
トレーニングが完了すると、同じ潜在ドメインを持つ様々な事前訓練された拡散モデルが同じOMSモジュールを共有することができる。
論文 参考訳(メタデータ) (2023-11-27T12:02:42Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
生成学習の観点からSED問題を再構築する。
具体的には,騒音拡散過程において,雑音のある提案から音の時間境界を生成することを目的としている。
トレーニング中は,ノイズの多い遅延クエリを基本バージョンに変換することで,ノイズ発生過程の逆転を学習する。
論文 参考訳(メタデータ) (2023-08-14T17:29:41Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Empowering Diffusion Models on the Embedding Space for Text Generation [38.664533078347304]
埋め込み空間とデノナイジングモデルの両方で直面する最適化課題について検討する。
データ分散は埋め込みにおいて学習可能であり、埋め込み空間の崩壊と不安定なトレーニングにつながる可能性がある。
以上の解析に基づいて,Transformerに基づく埋め込み拡散モデルであるDifformerを提案する。
論文 参考訳(メタデータ) (2022-12-19T12:44:25Z) - From Denoising Diffusions to Denoising Markov Models [38.33676858989955]
デノイング拡散は、顕著な経験的性能を示す最先端の生成モデルである。
本稿では、この手法を広い範囲に一般化し、スコアマッチングのオリジナル拡張につながる統一フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-07T14:34:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。