論文の概要: Seismic Data Interpolation via Denoising Diffusion Implicit Models with Coherence-corrected Resampling
- arxiv url: http://arxiv.org/abs/2307.04226v3
- Date: Fri, 6 Sep 2024 07:10:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 21:08:19.032832
- Title: Seismic Data Interpolation via Denoising Diffusion Implicit Models with Coherence-corrected Resampling
- Title(参考訳): Coherence-corrected Resamplingを用いた拡散インシシデントモデルによる地震データ補間
- Authors: Xiaoli Wei, Chunxia Zhang, Hongtao Wang, Chengli Tan, Deng Xiong, Baisong Jiang, Jiangshe Zhang, Sang-Woon Kim,
- Abstract要約: U-Netのようなディープラーニングモデルは、トレーニングとテストの欠落パターンが一致しない場合、しばしばパフォーマンスが低下する。
マルチモーダル拡散モデルに基づく新しいフレームワークを提案する。
推論フェーズでは,サンプリングステップの数を減らし,暗黙的拡散モデルを導入する。
露呈された痕跡と欠落した痕跡との一貫性と連続性を高めるために,我々は2つの戦略を提案する。
- 参考スコア(独自算出の注目度): 7.755439545030289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate interpolation of seismic data is crucial for improving the quality of imaging and interpretation. In recent years, deep learning models such as U-Net and generative adversarial networks have been widely applied to seismic data interpolation. However, they often underperform when the training and test missing patterns do not match. To alleviate this issue, here we propose a novel framework that is built upon the multi-modal adaptable diffusion models. In the training phase, following the common wisdom, we use the denoising diffusion probabilistic model with a cosine noise schedule. This cosine global noise configuration improves the use of seismic data by reducing the involvement of excessive noise stages. In the inference phase, we introduce the denoising diffusion implicit model to reduce the number of sampling steps. Different from the conventional unconditional generation, we incorporate the known trace information into each reverse sampling step for achieving conditional interpolation. To enhance the coherence and continuity between the revealed traces and the missing traces, we further propose two strategies, including successive coherence correction and resampling. Coherence correction penalizes the mismatches in the revealed traces, while resampling conducts cyclic interpolation between adjacent reverse steps. Extensive experiments on synthetic and field seismic data validate our model's superiority and demonstrate its generalization capability to various missing patterns and different noise levels with just one training session. In addition, uncertainty quantification and ablation studies are also investigated.
- Abstract(参考訳): 地震データの正確な補間は、画像や解釈の質の向上に不可欠である。
近年, 地震データ補間には, U-Net などの深層学習モデルや生成敵対ネットワークが広く応用されている。
しかしながら、トレーニングやテストの欠如が一致しない場合には、パフォーマンスが低下することが多い。
この問題を軽減するために,多モード適応拡散モデルに基づく新しいフレームワークを提案する。
トレーニングフェーズでは、一般的な知恵に従って、コサインノイズスケジュールを持つ拡散確率モデルを使用する。
この余剰なグローバルノイズ構成は、過度なノイズステージの関与を減らすことで、地震データの利用を改善する。
推論段階では,サンプリングステップの数を減らし,暗黙的拡散モデルを導入する。
従来の非条件生成とは違って,各逆サンプリングステップに既知のトレース情報を組み込んで条件補間を行う。
そこで我々は, 連続したコヒーレンス補正と再サンプリングを含む2つの手法を提案する。
コヒーレンス補正は明らかにされた痕跡のミスマッチを罰し、再サンプリングは隣接する逆ステップ間の巡回補間を行う。
合成および現地地震データに対する広範囲な実験により、モデルの優越性を検証し、1回のトレーニングセッションだけで、様々な欠落パターンと異なる雑音レベルへの一般化能力を実証した。
また,不確実性定量化およびアブレーション研究についても検討した。
関連論文リスト
- On the Relation Between Linear Diffusion and Power Iteration [42.158089783398616]
相関機械として生成過程を研究する」
生成過程の早い段階で低周波が出現し, 固有値に依存する速度で, 偏極基底ベクトルが真のデータにより整合していることが示される。
このモデルにより、線形拡散モデルが、一般的な電力反復法と同様に、基礎データの先頭固有ベクトルに平均的に収束することを示すことができる。
論文 参考訳(メタデータ) (2024-10-16T07:33:12Z) - Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration [64.84134880709625]
拡散モデルを用いて,雑音空間を介して領域適応を行うことが可能であることを示す。
特に、補助的な条件入力が多段階の復調過程にどのように影響するかというユニークな性質を活用することにより、有意義な拡散損失を導出する。
拡散モデルにおけるチャネルシャッフル層や残留スワッピング型コントラスト学習などの重要な戦略を提案する。
論文 参考訳(メタデータ) (2024-06-26T17:40:30Z) - Inference Stage Denoising for Undersampled MRI Reconstruction [13.8086726938161]
磁気共鳴画像(MRI)データの再構成は、ディープラーニングによって肯定的な影響を受けている。
重要な課題は、トレーニングとテストデータ間の分散シフトへの一般化を改善することだ。
論文 参考訳(メタデータ) (2024-02-12T12:50:10Z) - Blue noise for diffusion models [50.99852321110366]
本稿では,画像内および画像間の相関雑音を考慮した拡散モデルを提案する。
我々のフレームワークは、勾配流を改善するために、1つのミニバッチ内に画像間の相関を導入することができる。
本手法を用いて,各種データセットの質的,定量的な評価を行う。
論文 参考訳(メタデータ) (2024-02-07T14:59:25Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) は、推論中に単純だが効果的なステップを付加したコンパクトネットワークである。
OMSは画像の忠実度を高め、トレーニングと推論の二分法を調和させ、元のモデルパラメータを保存する。
トレーニングが完了すると、同じ潜在ドメインを持つ様々な事前訓練された拡散モデルが同じOMSモジュールを共有することができる。
論文 参考訳(メタデータ) (2023-11-27T12:02:42Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
生成学習の観点からSED問題を再構築する。
具体的には,騒音拡散過程において,雑音のある提案から音の時間境界を生成することを目的としている。
トレーニング中は,ノイズの多い遅延クエリを基本バージョンに変換することで,ノイズ発生過程の逆転を学習する。
論文 参考訳(メタデータ) (2023-08-14T17:29:41Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Empowering Diffusion Models on the Embedding Space for Text Generation [38.664533078347304]
埋め込み空間とデノナイジングモデルの両方で直面する最適化課題について検討する。
データ分散は埋め込みにおいて学習可能であり、埋め込み空間の崩壊と不安定なトレーニングにつながる可能性がある。
以上の解析に基づいて,Transformerに基づく埋め込み拡散モデルであるDifformerを提案する。
論文 参考訳(メタデータ) (2022-12-19T12:44:25Z) - From Denoising Diffusions to Denoising Markov Models [38.33676858989955]
デノイング拡散は、顕著な経験的性能を示す最先端の生成モデルである。
本稿では、この手法を広い範囲に一般化し、スコアマッチングのオリジナル拡張につながる統一フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-07T14:34:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。