論文の概要: Automated Essay Scoring in Argumentative Writing: DeBERTeachingAssistant
- arxiv url: http://arxiv.org/abs/2307.04276v1
- Date: Sun, 9 Jul 2023 23:02:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 14:29:06.916668
- Title: Automated Essay Scoring in Argumentative Writing: DeBERTeachingAssistant
- Title(参考訳): 解説文における自動エッセイスコーリング:DeBERTeaching Assistant
- Authors: Yann Hicke, Tonghua Tian, Karan Jha, Choong Hee Kim
- Abstract要約: 本稿では,議論的記述談話要素の注釈付けにおいて,上述の精度を達成できるトランスフォーマーに基づくアーキテクチャを提案する。
我々は、学生に実行可能なフィードバックを提供するために、我々のモデルの説明可能性を調べる今後の研究を拡大する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated Essay scoring has been explored as a research and industry problem
for over 50 years. It has drawn a lot of attention from the NLP community
because of its clear educational value as a research area that can engender the
creation of valuable time-saving tools for educators around the world. Yet,
these tools are generally focused on detecting good grammar, spelling mistakes,
and organization quality but tend to fail at incorporating persuasiveness
features in their final assessment. The responsibility to give actionable
feedback to the student to improve the strength of their arguments is left
solely on the teacher's shoulders. In this work, we present a transformer-based
architecture capable of achieving above-human accuracy in annotating
argumentative writing discourse elements for their persuasiveness quality and
we expand on planned future work investigating the explainability of our model
so that actionable feedback can be offered to the student and thus potentially
enable a partnership between the teacher's advice and the machine's advice.
- Abstract(参考訳): 自動評価は50年以上にわたって研究・産業問題として研究されてきた。
世界中の教育者にとって貴重な時間節約ツールを創出できる研究分野としての教育的価値が明白であることから、NLPコミュニティから多くの注目を集めている。
しかし、これらのツールは一般的に良い文法の検出、スペルミス、組織品質にフォーカスしているが、最終的な評価には説得力のある特徴を組み込むのに失敗する傾向がある。
議論の強さを改善するために生徒に行動可能なフィードバックを与える責任は、教師の肩にのみ残される。
そこで本研究では,その説得力の質を議論的に記述する談話要素に注釈を付けることで,上述の正確性を達成するトランスフォーマーアーキテクチャを提案するとともに,提案モデルの説明可能性を調査する今後の課題についても拡張し,教師のアドバイスと機械のアドバイスとのパートナーシップを可能にする。
関連論文リスト
- "My Grade is Wrong!": A Contestable AI Framework for Interactive Feedback in Evaluating Student Essays [6.810086342993699]
本稿では,対話型フィードバックを自動生成するContestable AI Empowered LLM FrameworkであるCAELFを紹介する。
CAELFは、マルチエージェントシステムと計算的議論を統合することで、学生がフィードバックをクエリし、挑戦し、明確化することができる。
ユーザスタディを用いた500の批判的思考エッセイのケーススタディでは,CAELFが対話的フィードバックを大幅に改善することが示された。
論文 参考訳(メタデータ) (2024-09-11T17:59:01Z) - Leveraging Large Language Models for Actionable Course Evaluation Student Feedback to Lecturers [6.161370712594005]
コンピュータサイエンス科の75科以上で742名の学生が回答した。
各コースについて,授業評価項目と動作可能な項目の要約を合成する。
本研究は, 授業環境における教師に対して, 実感的, 行動的, 適切なフィードバックを生み出すために, 生成的AIを使用する可能性を強調した。
論文 参考訳(メタデータ) (2024-07-01T13:29:55Z) - Representational Alignment Supports Effective Machine Teaching [81.19197059407121]
我々は,機械教育の知見と実践的なコミュニケーションを,表現的アライメントに関する文献と統合する。
教師の精度から表現的アライメントを遠ざける教師付き学習環境を設計する。
論文 参考訳(メタデータ) (2024-06-06T17:48:24Z) - Evaluation of ChatGPT Feedback on ELL Writers' Coherence and Cohesion [0.7028778922533686]
ChatGPTは、学生が宿題を手伝うために利用し、教師が教育実践に積極的に採用している教育に変革をもたらす。
本研究は,英語学習者(ELL)のエッセイの一貫性と凝集性について,ChatGPTが生み出したフィードバックの質を評価した。
論文 参考訳(メタデータ) (2023-10-10T10:25:56Z) - PapagAI:Automated Feedback for Reflective Essays [48.4434976446053]
ドクティック理論をベースとして,ハイブリッドAIシステムとして実装された,初のオープンソース自動フィードバックツールを提案する。
本研究の主な目的は,学生の学習成果の向上と,講師の指導活動を補完することである。
論文 参考訳(メタデータ) (2023-07-10T11:05:51Z) - Covering Uncommon Ground: Gap-Focused Question Generation for Answer
Assessment [75.59538732476346]
このようなギャップに着目した質問(GFQ)を自動生成する問題に着目する。
タスクを定義し、優れたGFQの所望の側面を強調し、これらを満たすモデルを提案する。
論文 参考訳(メタデータ) (2023-07-06T22:21:42Z) - Perception, performance, and detectability of conversational artificial
intelligence across 32 university courses [15.642614735026106]
大学レベル32科目におけるChatGPTの成績を比較した。
また,ChatGPTの成績は,多くの科目における生徒の成績と同等であることがわかった。
このツールを使用する学生や、これを盗作として扱う教育者の間では、新たなコンセンサスが高まっている。
論文 参考訳(メタデータ) (2023-05-07T10:37:51Z) - Opportunities and Challenges in Neural Dialog Tutoring [54.07241332881601]
言語学習のための2つの対話学習データセットを用いて、様々な生成言語モデルを厳密に分析する。
現在のアプローチでは、制約のある学習シナリオでチューリングをモデル化できますが、制約の少ないシナリオではパフォーマンスが悪くなります。
人的品質評価では, モデルと接地木アノテーションの両方が, 同等のチュータリングの点で低い性能を示した。
論文 参考訳(メタデータ) (2023-01-24T11:00:17Z) - Automated Evaluation for Student Argumentative Writing: A Survey [2.9466390764652415]
本稿では,学生論文の自動評価という,未研究領域における研究成果の調査と整理を行う。
全体論的なエッセイ評価に焦点を当てた従来の自動筆記評価とは異なり、この分野はより具体的であり、議論的なエッセイを評価し、特定のフィードバックを提供する。
論文 参考訳(メタデータ) (2022-05-09T07:27:59Z) - My Teacher Thinks The World Is Flat! Interpreting Automatic Essay
Scoring Mechanism [71.34160809068996]
最近の研究では、自動スコアリングシステムが常識的な敵対的サンプルになりやすいことが示されています。
近年の解釈能力の進歩を活かし,コヒーレンスやコンテント,関連性といった特徴がスコアリングの自動化にどの程度重要であるかを見出す。
また、モデルが意味的に世界知識や常識に基づかないことから、世界のような虚偽の事実を追加することは、それを減らすよりもむしろスコアを増加させる。
論文 参考訳(メタデータ) (2020-12-27T06:19:20Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
教師の音声記録から質問を自動的に検出するエンドツーエンドのニューラルネットワークフレームワークを構築している。
マルチタスク学習手法を取り入れることで,質問の種類によって意味的関係の理解を深めることが可能となる。
論文 参考訳(メタデータ) (2020-05-16T02:17:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。