論文の概要: PapagAI:Automated Feedback for Reflective Essays
- arxiv url: http://arxiv.org/abs/2307.07523v1
- Date: Mon, 10 Jul 2023 11:05:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-23 12:15:37.805563
- Title: PapagAI:Automated Feedback for Reflective Essays
- Title(参考訳): PapagAI:リフレクティブ・エッセイのための自動フィードバック
- Authors: Veronika Solopova, Adrian Gruszczynski, Eiad Rostom, Fritz Cremer,
Sascha Witte, Chengming Zhang, Fernando Ramos L\'opez Lea Pl\"o{\ss}l,
Florian Hofmann, Ralf Romeike, Michaela Gl\"aser-Zikuda, Christoph
Benzm\"uller and Tim Landgraf
- Abstract要約: ドクティック理論をベースとして,ハイブリッドAIシステムとして実装された,初のオープンソース自動フィードバックツールを提案する。
本研究の主な目的は,学生の学習成果の向上と,講師の指導活動を補完することである。
- 参考スコア(独自算出の注目度): 48.4434976446053
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Written reflective practice is a regular exercise pre-service teachers
perform during their higher education. Usually, their lecturers are expected to
provide individual feedback, which can be a challenging task to perform on a
regular basis. In this paper, we present the first open-source automated
feedback tool based on didactic theory and implemented as a hybrid AI system.
We describe the components and discuss the advantages and disadvantages of our
system compared to the state-of-art generative large language models. The main
objective of our work is to enable better learning outcomes for students and to
complement the teaching activities of lecturers.
- Abstract(参考訳): リフレクティブ・プラクティス(英: Reflective Practice)は、高等教育における教員の定期的な演習である。
通常、講師は個別のフィードバックを提供することが期待されており、定期的に行うのが困難な作業となる。
本稿では,ドクトクティック理論に基づく初のオープンソース自動フィードバックツールを提案し,ハイブリッドAIシステムとして実装する。
本稿では, 現状の大規模言語モデルと比較して, システムの利点と欠点について述べる。
本研究の主な目的は,学生の学習成果の向上と,講師の指導活動を補完することである。
関連論文リスト
- Leveraging Large Language Models for Actionable Course Evaluation Student Feedback to Lecturers [6.161370712594005]
コンピュータサイエンス科の75科以上で742名の学生が回答した。
各コースについて,授業評価項目と動作可能な項目の要約を合成する。
本研究は, 授業環境における教師に対して, 実感的, 行動的, 適切なフィードバックを生み出すために, 生成的AIを使用する可能性を強調した。
論文 参考訳(メタデータ) (2024-07-01T13:29:55Z) - Improving the Validity of Automatically Generated Feedback via
Reinforcement Learning [50.067342343957876]
強化学習(RL)を用いた正当性と整合性の両方を最適化するフィードバック生成フレームワークを提案する。
具体的には、直接選好最適化(DPO)によるトレーニングのための拡張データセットにおいて、GPT-4のアノテーションを使用してフィードバックペアよりも好みを生成する。
論文 参考訳(メタデータ) (2024-03-02T20:25:50Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
本稿では,教師が指導するプログレッシブ・ラーニング・フレームワークであるYodaを紹介する。
モデルファインチューニングの有効性を向上させるために,教師の教育過程をエミュレートする。
実験の結果, YODAのデータによるLLaMA2のトレーニングにより, SFTは大幅に向上した。
論文 参考訳(メタデータ) (2024-01-28T14:32:15Z) - An integrated framework for developing and evaluating an automated
lecture style assessment system [0.784125444722239]
提案アプリケーションは,表情,身体活動,発話速度と抑揚,手の動き,顔のポーズなど,特定の計測可能な生体特性を利用する。
その結果,本アプリケーションは新規で,講義品質に関するフィードバックの自動化に有用であることが示唆された。
論文 参考訳(メタデータ) (2023-11-30T21:31:21Z) - Active teacher selection for reinforcement learning from human feedback [14.009227941725783]
人間のフィードバックからの強化学習(RLHF)により、機械学習システムは人間のフィードバックから目的を学ぶことができる。
教師の合理性、専門性、コストの相違をモデル化するHidden Utility Banditフレームワークを提案する。
我々は、さまざまなソリューションアルゴリズムを開発し、それらを紙レコメンデーションシステムと新型コロナウイルスワクチンテストという2つの現実世界の領域に適用する。
論文 参考訳(メタデータ) (2023-10-23T18:54:43Z) - Using Large Language Models to Provide Explanatory Feedback to Human
Tutors [3.2507682694499582]
オンライン授業において,教師にリアルタイムフィードバックを提供するための2つのアプローチを提案する。
このワーク・イン・プログレス(英語版)は、効果的な、あるいは努力に基づく修正フィードバックのためのバイナリ分類においてかなりの精度を示す。
より具体的には、大言語モデルに精通した名前付きエンティティ認識を用いた説明的フィードバックを提供するための拡張されたアプローチについて紹介する。
論文 参考訳(メタデータ) (2023-06-27T14:19:12Z) - Yes, this Way! Learning to Ground Referring Expressions into Actions
with Intra-episodic Feedback from Supportive Teachers [15.211628096103475]
本研究は,協調的な環境下でのエポゾディック内フィードバックを評価するための最初の研究である。
以上の結果から,エポゾディック内フィードバックにより,参加者はシーンの複雑さの側面を一般化できることがわかった。
論文 参考訳(メタデータ) (2023-05-22T10:01:15Z) - Iterative Teacher-Aware Learning [136.05341445369265]
人間の教育において、教師と学生はコミュニケーション効率を最大化するために適応的に交流することができる。
本稿では,教師の協調意図を可能性関数に組み込むことができる,勾配最適化に基づく教師認識学習者を提案する。
論文 参考訳(メタデータ) (2021-10-01T00:27:47Z) - Combining Self-Training and Self-Supervised Learning for Unsupervised
Disfluency Detection [80.68446022994492]
本研究では,未ラベルテキストコーパスを扱える教師なし学習パラダイムについて検討する。
我々のモデルは、自己学習の考え方を拡張する半教師あり学習アプローチである、雑音学習(Noisy Student Training)に関する最近の研究に基づいている。
論文 参考訳(メタデータ) (2020-10-29T05:29:26Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
教師の音声記録から質問を自動的に検出するエンドツーエンドのニューラルネットワークフレームワークを構築している。
マルチタスク学習手法を取り入れることで,質問の種類によって意味的関係の理解を深めることが可能となる。
論文 参考訳(メタデータ) (2020-05-16T02:17:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。