An Examination of Wearable Sensors and Video Data Capture for Human
Exercise Classification
- URL: http://arxiv.org/abs/2307.04516v1
- Date: Mon, 10 Jul 2023 12:24:04 GMT
- Title: An Examination of Wearable Sensors and Video Data Capture for Human
Exercise Classification
- Authors: Ashish Singh and Antonio Bevilacqua and Timilehin B. Aderinola and
Thach Le Nguyen and Darragh Whelan and Martin O'Reilly and Brian Caulfield
and Georgiana Ifrim
- Abstract summary: We compare the performance of IMUs to a video-based approach for human exercise classification on two real-world datasets.
We observe that an approach based on a single camera can outperform a single IMU by 10 percentage points on average.
Our work opens up new and more realistic avenues for this application, where a video captured using a readily available smartphone camera, combined with a single sensor, can be used for effective human exercise classification.
- Score: 9.674125829493214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wearable sensors such as Inertial Measurement Units (IMUs) are often used to
assess the performance of human exercise. Common approaches use handcrafted
features based on domain expertise or automatically extracted features using
time series analysis. Multiple sensors are required to achieve high
classification accuracy, which is not very practical. These sensors require
calibration and synchronization and may lead to discomfort over longer time
periods. Recent work utilizing computer vision techniques has shown similar
performance using video, without the need for manual feature engineering, and
avoiding some pitfalls such as sensor calibration and placement on the body. In
this paper, we compare the performance of IMUs to a video-based approach for
human exercise classification on two real-world datasets consisting of Military
Press and Rowing exercises. We compare the performance using a single camera
that captures video in the frontal view versus using 5 IMUs placed on different
parts of the body. We observe that an approach based on a single camera can
outperform a single IMU by 10 percentage points on average. Additionally, a
minimum of 3 IMUs are required to outperform a single camera. We observe that
working with the raw data using multivariate time series classifiers
outperforms traditional approaches based on handcrafted or automatically
extracted features. Finally, we show that an ensemble model combining the data
from a single camera with a single IMU outperforms either data modality. Our
work opens up new and more realistic avenues for this application, where a
video captured using a readily available smartphone camera, combined with a
single sensor, can be used for effective human exercise classification.
Related papers
- Redundancy-Aware Camera Selection for Indoor Scene Neural Rendering [54.468355408388675]
We build a similarity matrix that incorporates both the spatial diversity of the cameras and the semantic variation of the images.
We apply a diversity-based sampling algorithm to optimize the camera selection.
We also develop a new dataset, IndoorTraj, which includes long and complex camera movements captured by humans in virtual indoor environments.
arXiv Detail & Related papers (2024-09-11T08:36:49Z) - Practical Video Object Detection via Feature Selection and Aggregation [18.15061460125668]
Video object detection (VOD) needs to concern the high across-frame variation in object appearance, and the diverse deterioration in some frames.
Most of contemporary aggregation methods are tailored for two-stage detectors, suffering from high computational costs.
This study invents a very simple yet potent strategy of feature selection and aggregation, gaining significant accuracy at marginal computational expense.
arXiv Detail & Related papers (2024-07-29T02:12:11Z) - MuJo: Multimodal Joint Feature Space Learning for Human Activity Recognition [2.7532797256542403]
Human Activity Recognition (HAR) is a longstanding problem in AI with applications in a broad range of areas, including healthcare, sports and fitness, security, and more.
We introduce our comprehensive Fitness Multimodal Activity dataset (FiMAD) to enhance HAR performance across various modalities.
We show that classifiers pre-trained on FiMAD can increase the performance on real HAR datasets such as MM-Fit, MyoGym, MotionSense, and MHEALTH.
arXiv Detail & Related papers (2024-06-06T08:42:36Z) - HMP: Hand Motion Priors for Pose and Shape Estimation from Video [52.39020275278984]
We develop a generative motion prior specific for hands, trained on the AMASS dataset which features diverse and high-quality hand motions.
Our integration of a robust motion prior significantly enhances performance, especially in occluded scenarios.
We demonstrate our method's efficacy via qualitative and quantitative evaluations on the HO3D and DexYCB datasets.
arXiv Detail & Related papers (2023-12-27T22:35:33Z) - Efficient Adaptive Human-Object Interaction Detection with
Concept-guided Memory [64.11870454160614]
We propose an efficient Adaptive HOI Detector with Concept-guided Memory (ADA-CM)
ADA-CM has two operating modes. The first mode makes it tunable without learning new parameters in a training-free paradigm.
Our proposed method achieves competitive results with state-of-the-art on the HICO-DET and V-COCO datasets with much less training time.
arXiv Detail & Related papers (2023-09-07T13:10:06Z) - Fast and Robust Video-Based Exercise Classification via Body Pose
Tracking and Scalable Multivariate Time Series Classifiers [13.561233730881279]
We present the application of classifying S&C exercises using video.
We propose an approach named BodyMTS to turn video into time series by employing body pose tracking.
We show that BodyMTS achieves an average accuracy of 87%, which is significantly higher than the accuracy of human domain experts.
arXiv Detail & Related papers (2022-10-02T13:03:38Z) - Differentiable Frequency-based Disentanglement for Aerial Video Action
Recognition [56.91538445510214]
We present a learning algorithm for human activity recognition in videos.
Our approach is designed for UAV videos, which are mainly acquired from obliquely placed dynamic cameras.
We conduct extensive experiments on the UAV Human dataset and the NEC Drone dataset.
arXiv Detail & Related papers (2022-09-15T22:16:52Z) - Muscle Vision: Real Time Keypoint Based Pose Classification of Physical
Exercises [52.77024349608834]
3D human pose recognition extrapolated from video has advanced to the point of enabling real-time software applications.
We propose a new machine learning pipeline and web interface that performs human pose recognition on a live video feed to detect when common exercises are performed and classify them accordingly.
arXiv Detail & Related papers (2022-03-23T00:55:07Z) - Human Activity Recognition models using Limited Consumer Device Sensors
and Machine Learning [0.0]
Human activity recognition has grown in popularity with its increase of applications within daily lifestyles and medical environments.
This paper presents the findings of different models that are limited to train using sensor data from smartphones and smartwatches.
Results show promise for models trained strictly using limited sensor data collected from only smartphones and smartwatches coupled with traditional machine learning concepts and algorithms.
arXiv Detail & Related papers (2022-01-21T06:54:05Z) - One to Many: Adaptive Instrument Segmentation via Meta Learning and
Dynamic Online Adaptation in Robotic Surgical Video [71.43912903508765]
MDAL is a dynamic online adaptive learning scheme for instrument segmentation in robot-assisted surgery.
It learns the general knowledge of instruments and the fast adaptation ability through the video-specific meta-learning paradigm.
It outperforms other state-of-the-art methods on two datasets.
arXiv Detail & Related papers (2021-03-24T05:02:18Z) - Yet it moves: Learning from Generic Motions to Generate IMU data from
YouTube videos [5.008235182488304]
We show how we can train a regression model on generic motions for both accelerometer and gyro signals to generate synthetic IMU data.
We demonstrate that systems trained on simulated data generated by our regression model can come to within around 10% of the mean F1 score of a system trained on real sensor data.
arXiv Detail & Related papers (2020-11-23T18:16:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.