Gradient Surgery for One-shot Unlearning on Generative Model
- URL: http://arxiv.org/abs/2307.04550v2
- Date: Tue, 18 Jul 2023 15:30:30 GMT
- Title: Gradient Surgery for One-shot Unlearning on Generative Model
- Authors: Seohui Bae, Seoyoon Kim, Hyemin Jung, Woohyung Lim
- Abstract summary: We introduce a simple yet effective approach to remove a data influence on the deep generative model.
Inspired by works in multi-task learning, we propose to manipulate gradients to regularize the interplay of influence among samples.
- Score: 0.989293617504294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent regulation on right-to-be-forgotten emerges tons of interest in
unlearning pre-trained machine learning models. While approximating a
straightforward yet expensive approach of retrain-from-scratch, recent machine
unlearning methods unlearn a sample by updating weights to remove its influence
on the weight parameters. In this paper, we introduce a simple yet effective
approach to remove a data influence on the deep generative model. Inspired by
works in multi-task learning, we propose to manipulate gradients to regularize
the interplay of influence among samples by projecting gradients onto the
normal plane of the gradients to be retained. Our work is agnostic to
statistics of the removal samples, outperforming existing baselines while
providing theoretical analysis for the first time in unlearning a generative
model.
Related papers
- Outlier Gradient Analysis: Efficiently Identifying Detrimental Training Samples for Deep Learning Models [36.05242956018461]
In this paper, we establish a bridge between identifying detrimental training samples via influence functions and outlier gradient detection.
We first validate the hypothesis of our proposed outlier gradient analysis approach on synthetic datasets.
We then demonstrate its effectiveness in detecting mislabeled samples in vision models and selecting data samples for improving performance of natural language processing transformer models.
arXiv Detail & Related papers (2024-05-06T21:34:46Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
Key challenge in unlearning is forgetting the necessary data in a timely manner, while preserving model performance.
In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.
We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z) - Sample Efficient Reinforcement Learning via Model-Ensemble Exploration
and Exploitation [3.728946517493471]
MEEE is a model-ensemble method that consists of optimistic exploration and weighted exploitation.
Our approach outperforms other model-free and model-based state-of-the-art methods, especially in sample complexity.
arXiv Detail & Related papers (2021-07-05T07:18:20Z) - Learning to Reweight Imaginary Transitions for Model-Based Reinforcement
Learning [58.66067369294337]
When the model is inaccurate or biased, imaginary trajectories may be deleterious for training the action-value and policy functions.
We adaptively reweight the imaginary transitions, so as to reduce the negative effects of poorly generated trajectories.
Our method outperforms state-of-the-art model-based and model-free RL algorithms on multiple tasks.
arXiv Detail & Related papers (2021-04-09T03:13:35Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Domain Knowledge Integration By Gradient Matching For Sample-Efficient
Reinforcement Learning [0.0]
We propose a gradient matching algorithm to improve sample efficiency by utilizing target slope information from the dynamics to aid the model-free learner.
We demonstrate this by presenting a technique for matching the gradient information from the model-based learner with the model-free component in an abstract low-dimensional space.
arXiv Detail & Related papers (2020-05-28T05:02:47Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
Current model-based reinforcement learning approaches use the model simply as a learned black-box simulator.
We show how to make more effective use of the model by exploiting its differentiability.
arXiv Detail & Related papers (2020-05-16T19:18:10Z) - An Efficient Method of Training Small Models for Regression Problems
with Knowledge Distillation [1.433758865948252]
We propose a new formalism of knowledge distillation for regression problems.
First, we propose a new loss function, teacher outlier loss rejection, which rejects outliers in training samples using teacher model predictions.
By considering the multi-task network, training of the feature extraction of student models becomes more effective.
arXiv Detail & Related papers (2020-02-28T08:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.